DRAFT

BROWNFIELD PRELIMINARY ASSESSMENT II

GEORGE GRAY ELEMENTARY SCHOOL WILMINGTON, DELAWARE

DELAWARE DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL CONTROL

DE-1138

June, 1999

Prepared By:

Lawrence J. Jones
Environmental Scientist
Site Investigation and Restoration Branch
Division of Air and Waste Management
Department of Natural Resources and
Environmental Control
391 Lukens Drive
New Castle, Delaware 19720

Reviewed and Approved By:

Karl F. Kalbacher
Environmental Program Manager I
Site Investigation and Restoration Branch
Division of Air and Waste Management
Department of Natural Resources and
Environmental Control
391 Lukens Drive
New Castle, Delaware 19720

EXECUTIVE SUMMARY

The Delaware Department of Natural Resources and Environmental Control (DNREC) Site Investigation and Restoration Branch (SIRB), in cooperation with the United States Environmental Protection Agency (EPA), conducted a Brownfield Preliminary Assessment II (BPA II) for the former George Gray Elementary School site located at 2113 Thatcher Street in Wilmington, Delaware.

The property is located in the northeast section of Wilmington. Vandever Avenue borders the property on the southwest, Locust Street on the northwest, 23rd Street on the northeast and Thatcher Street on the southeast. The site consists of approximately 4.0 acres, and is located in the northeast section of the City of Wilmington. The coordinates of the site are 39^b 44' 53" North, and 75^o 31' 59" West (1987).

The property was formerly an elementary school that was constructed in approximately 1924. A building addition was added facing Locust Street in approximately 1954.

The primary proposed reuse of the building is a Charter School. This adaptive reuse of the building would include the additions of a culinary arts school and possible catering business, a community banquet and conference center and two cafes. Also proposed are a day care center and a recording studio.

The purpose of the Brownfield Preliminary Assessment II was to investigate the possible existence of released hazardous substances at the George Gray School site through the collection and analysis of environmental samples. The media sampled included surface soils and deep soils. Soil samples were field screened by the DNREC SIRB Analytical Chemist and selected samples were submitted to the DNREC Division of Water Resources Environmental Services Laboratory for analysis of specified parameters.

The analytical data generated from the collection and laboratory analysis of the environmental samples was subsequently evaluated to determine the potential for human and environmental exposures to hazardous substances.

After the completion of the BPA II, DNREC submitted the report to the EPA and State officials who will decide whether the site should undergo further investigation or obtain a "No Further Action" (NFA) designation under the Federal Superfund and/or State Site Investigation & Restoration Branch Programs.

The BPA II is intended to provide a general characterization of the environmental conditions present at the site and does not provide a 100% complete surface and subsurface assessment of the project area or individual properties. The assessments contained within are based solely on conditions at the time of sampling and the specific locations evaluated.

As part of the BPA II, 11 test pits were excavated and 11 shallow and 14 deep soil samples were

collected. Five additional shallow soil samples were collected from areas close to the building.

Test pit logs indicate that the site has received fill materials including sands, silts, clays, gravels, rock and bricks, with some wood, metal, slags, coal, and coal and incinerator ash. Some trash and miscellaneous debris were also noted. Depths of fill materials encountered ranged from 2 to 13 feet.

The property is mostly unfenced and access is unrestricted on the majority of the property. The south parking area is paved and fenced and most of the remaining property is grass covered.

Soil samples were collected from 11 test pits locations throughout the site area. Soil samples were field screened for PCBs and PAHs and related pesticides using immunoassay test kits and for metals using XRF.

Based on the results of field screening, soil samples from the George Gray School property exhibited elevated concentrations of some metals, most notably Arsenic and Lead. Arsenic and Lead were both detected in shallow and deep test pit soil samples in excess of screening benchmarks.

Elevated Arsenic and Lead concentrations were confirmed by laboratory analysis of selected samples. Five out of six soil samples submitted to the laboratory exhibited Arsenic concentrations greater than screening benchmarks, with a high of 40.8 mg/Kg. Five out of six soil samples submitted to the laboratory contained Lead at concentrations above the benchmark for residential soil (URS) and two of these exceeded the Industrial soil URS. The highest concentration of Lead detected was 1510 mg/Kg. The highest Lead concentrations were detected in test pits TP-4 and TP-9 and were associated with coal or incinerator ash found in the test pits.

Iron, Manganese and Zinc were also detected in soil samples at concentrations greater than the residential URS and/or RBC's.

Two samples were submitted for TCLP metals analysis. TCLP analysis indicates that both samples were below the regulatory level for Lead as a hazardous waste. The other metals were also below the applicable levels.

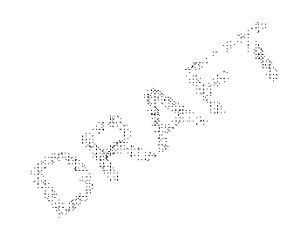
Immunoassay screening and subsequent laboratory analysis of soil samples indicated no significant concentrations of PCBs to be present in the site samples.

Carcinogenic PAHs were the primary organic contaminant of concern with six out of seven samples submitted for laboratory analysis significantly exceeding the screening benchmark. The highest total PAH concentration was over 120 ppm in sample TP-3S. Sample SS-4 also exhibited significantly elevated total PAH values.

In addition to the laboratory data presented in the tables and analytical data package, the data validator also reported that the chromatograms for soil samples TP-3S, TP-10D, TP-6S and SS-4 exhibited coal ash/tar C11-C22 aromatic petroleum patterns. The results exceed HSCA guidance

criteria in TP-3S.

A review of the George Gray School property was also undertaken by representatives from the DNREC Underground Storage Tank Branch (UST) and Air Resources Branch in order to evaluate the presence or absence of underground storage tanks or asbestos. In addition, USA Environmental Management Inc. (USAEMI) performed a hazardous materials evaluation of the building structure. Along with the issues related to testing of environmental media, these assessments have resulted in the following recommendations:


- Two Underground Storage Tanks (USTs), formerly containing heating oil are located in the
 southeastern corner of the property in the parking lot. The tank sizes are listed as 8000 and
 10,000 gallon. The UST Branch has determined that these tanks must be removed or properly
 abandoned and the surrounding soil sampled for contamination. No surface evidence of other
 USTs was noted, however the presence of other tanks couldn't be completely ruled out.
- Asbestos Containing Material (ACM) in the form of thermal insulation, floor tiles and debris
 was noted on the inside of the building. Some possible ACM may also be contained within
 the built-up roofing materials. DNREC-SIRB advises that prior to any demolition an asbestos
 survey via a State of Delaware Certified Professional Firm must be performed to identify
 any other possible asbestos containing materials.
- Several damaged paint surfaces were tested by USAEMI for the presence of Lead. All but
 two samples tested contained Lead in excess of the level established by EPA as "positive".
 Stabilization or abatement of Lead-containing paint in the building should occur to reduce
 potential hazards.
- The presence of several drums of unknown material was noted in the USAEMI report. The
 contents of these drums should be tested to characterize the material and then the drums
 should be disposed of in accordance with applicable regulations.
- The building contains fluorescent light fixtures that were noted in the USAEMI report. PCB containing oils were present in the ballasts associated with these light fixtures. The fluorescent tubes and PCB containing ballasts should be removed and properly disposed of in accordance with applicable regulations.

Based upon the information collected from the Brownfield Preliminary Assessment II at the former George Gray Elementary School, the DNREC SIRB identified the following issues and concerns, which need to be addressed with oversight by DNREC:

- Based upon the contaminants detected in the on-site soils, there is potential exposure of
 people to contaminated soil through inadvertent ingestion and airborne dust, primarily during
 excavation.
- Potential exposure of workers to contaminated soils during excavation and construction

especially in the area containing Lead and PAH concentrations,

- Two heating oil USTs are out of compliance and must be removed and the surrounding soil sampled and analyzed,
- Remediation and proper disposal of the asbestos containing materials and lead containing paint should be completed,
- Removal and proper disposal of fluorescent tubes and PCB containing oil and ballasts should be completed.

TABLE OF CONTENTS

1.0	INTRODUCTION		1
2.0	SITE DESCRIPTION AND OPERATIONAL HIS	rory	1
2 1			
2.1	DNREC - Property Operar Site Visite - George Creat	Calcal Banasa.	l
	Historical Man Review	school Property	2
	2.0 SITE DESCRIPTION AND OPERATIONAL HISTORY 2.1. SITE DESCRIPTION DNREC - Property Owner Site Visits — George Gray School Property Historical Map Review. 2.3.0 PREVIOUS INVESTIGATIONS. 3.0 PREVIOUS INVESTIGATIONS. 3.1 George Gray School Property – 2113 Thatcher Street. 3.2 Deed Search 4.1 INTRODUCTION. 4.2 SANPLING LOCATIONS. 4.3 ANALYTICAL ANALYSIS. 5.4 GROUNDWATER PATHWAY 5.1 HYDROGEOLOGIC SETTING. 5.2 GROUNDWATER TARGETS. 5.3 GROUNDWATER SAMPLE LOCATIONS. 5.4 GROUNDWATER CONCLUSIONS 6.0 SURFACE WATER AND SEDIMENT SAMPLE LOCATIONS 9.6.0 SURFACE WATER AND SEDIMENT SAMPLE LOCATIONS 10 6.1 HYDROLOGIC SETTING. 6.3 SURFACE WATER AND SEDIMENT SAMPLE LOCATIONS 11 7.0 SOIL EXPOSURE AND AIR PATHWAYS 11 7.1 PHYSICAL CONDITIONS 12 7.3 SOIL ANALYTICAL RESULTS — INORGANICS 7.4 SOIL ANALYTICAL RESULTS — INORGANICS 12 7.5 AIR MONITORING RESULTS — INORGANICS 12 7.6 SOIL EXPOSURE AND AIR PATHWAYS 16 7.7.5 AIR MONITORING RESULTS — INORGANICS 17 7.6 SOIL EXPOSURE AND AIR PATHWAY CONCLUSIONS 11 7.7.6 SOIL EXPOSURE AND AIR PATHWAYS 11 7.7.7 SOIL ANALYTICAL RESULTS — INORGANICS 12 7.1 AND STATE OF THE STATE		
3.0		•	
	George Gray School Property - 2113 Thatcher Street	***************************************	3
	Deed Search		
4.0			
4.1			
4.2	2. SAMPLING LOCATIONS		
	B. ANALYTICAL ANALYSIS	MA-4	7
5.1	1. HYDROGEOLOGIC SETTING		7
	2. GROUNDWATER TARGETS	wir fo	8
5.3	CROIMOWATER SAME EL OCATIONS	197, 1104,	
5.4	4. GROUNDWATER CONCLUSIONS		9
۲.	CHIEACE WATER NATIONAL	SCRIPTION AND OPERATIONAL HISTORY	
0.0	SURPACE WAILK PAINWAY	18444	
6.1	1. HYDROLOGIC SETTING	- 11 11 12 12 12 12 12 12	10
6.2	2. SURFACE WATER TARGETS		
6.3	1. SHREACE WATER AND SEDIMENT SAMPLE LOCATIO	NC :	17
6.4	4. SURFACE WATER & SEDIMENT CONCLUSIONS	;: ^^	11
7.0		•	
71	PHYSICAL CONDITIONS		1.1
	SOIL SAMPLING LOCATIONS		
	SOIL ANALYTICAL RESULTS - INDROMORS		
	SOIL ANALYTICAL RESULTS - ORGANICS		
	AIR MONITORING RESID TS	/	14 ,
	SOIL EXPOSURE AND AIR PATHWAY CONCLUSIONS		
	Arsenic		
	Polycyclic Aromatic Hydrocarbons (Renza (a) nyrene	Renzalalanthracene Renzalhilluaranti	тона
	Indeno(1,2,3-cd)pyrene, DiBenzo(a,h)anthracene, Ben	zo(k)fluoranthene)	
8.2	APPERTORAL DARKED DARKE	**************************************	19
	HAZADBONE WASTE		
			20
9.0	SUMMARY AND CONCLUSION		26

LIST OF FIGURES

Figure 1: Location of the George Gray School in the State of Delaware	26
Figure 2: Location of the George Gray School in New Castle County	27
Figure 3: Location of the George Gray School, Wilmington, Delaware	28
Figure 4: Orthophotoquad of the George Gray School Property	29
Figure 5: Historical Map of the George Gray School Area - 1876	30
Figure 6: Historical Map of the George Gray School Area - 1893	31
Figure 7: Historical Map of the George Gray School Area - 1901	32
Figure 8: Historical Map of the George Gray School Area - 1901	33
Figure 9: Topographic Map (1906).	34
Figure 10: Topographic Map (1936)	35
Figure 11: Flood Insurance Rate Map, George Gray School.	36
Figure 12: Geology of the George Gray School Area	37
Figure 13: Thickness of the Regolith - George Gray School Area	38
Figure 14: Soils Map	39
Figure 15: Wetlands in the Area of the George Gray School	40
Figure 16: Soil Sample Locations at the George Gray School	4 I
LIST OF TABLES Table A. Sample Locations and Descriptions for Test Pits and Soils Table B. Samples Submitted for Laboratory Analysis Table C. Soil Samples Exceeding Benchmarks- Inorganic Laboratory Data Table D. Toxic Characteristic Leaching Procedure (TCLP) Results Table E. Soil Samples Exceeding Benchmarks - Organic Laboratory Data LIST OF APPENDICES	7 13 14
Appendix A: USEPA Target Compound List and Target Analyte List Appendix B: Field Screening Procedures Appendix C: Test Pit Descriptive Logs Appendix D: Inorganic Data Validation Package, TCLP Data Package Appendix E: Organic Data Validation Package Appendix F: Laboratory Data Summary Tables Appendix G: Inorganic Data — X-Ray Fluorescence (XRF) Data Sheets Appendix H: Organic Data — Immunoassay Data Sheets Appendix I: Toxicological Evaluation	

1.0 INTRODUCTION

The Delaware Department of Natural Resources and Environmental Control (DNREC), Site Investigation and Restoration Branch (SIRB), in cooperation with the United States Environmental Protection Agency (EPA), conducted a Brownfield Preliminary Assessment II (BPA II) at the former George Gray Elementary School site. (Figures 1, 2, 3, 4)

The purpose of the Brownfield Preliminary Assessment II was to investigate the possible existence of released hazardous substances at the portion of the site through the collection and analysis of environmental samples. The analytical data generated from the collection and laboratory analysis of the environmental samples was subsequently evaluated to determine the potential for human and environmental exposures to hazardous substances. After the completion of the BPA II, DNREC will submit a report to the EPA and State officials who will decide whether the site should undergo further investigation or obtain a "No Further Action" (NFA) designation under the Federal Superfund and/or State Site Investigation & Restoration Branch Programs.

This study is intended to provide a general characterization of the environmental conditions present at the site and does not provide a 100% complete surface and subsurface assessment of the project area or individual properties. The assessments contained within are based solely on conditions at the time of sampling and the specific locations evaluated, and must be viewed in that context.

2.0 SITE DESCRIPTION AND OPERATIONAL HISTORY

2.1. Site Description

The site is approximately 4.0 acres in size and encompasses the majority of the block bounded by Vandever Avenue, Locust Street, 23^{cd} Street and Thatcher Street. A row of homes is located along the Vandever Avenue side of the property. A large "L"-shaped multi-story brick building (a former elementary school) is located near the center of the property. A large asphalt paved parking lot, surrounded by a locked gate and fence, is located on the southwest side of the building. The parking lot is cracked and broken with weeds and grass growing through the cracks. A large grassed field is located on the northeast side of the building property. A small open paved area, the former playground, is at the north end of the building. The coordinates of the site are 39° 44° 53" North, and 75° 31° 59" West (1987).

The property was formerly an elementary school that was constructed in approximately 1924. A building addition was added facing Locust Street in approximately 1954.

The building is currently undergoing asbestos and lead paint abatement on the inside of the structure. An office trailer is located in the south parking lot and a storage trailer is on the northwest side of the building.

A review of Underground Storage Tank (UST) Branch files indicates that there are two underground storage tanks present on the property. According to the property owner's consultant, the tanks are located at the southeast end of the parking lot. UST Branch tanks records indicate that they consist of one 10,000 gallon and one 8,000 gallon steel heating oil tanks installed in 1926. According to UST representatives, the tanks must be removed, but no activity has taken place at this time. Parks and open space are located on adjacent parcels on both the north and south sides of the school property. Private homes and apartments, and a small church border the remainder of the site.

The George Gray property is bounded to the north and east by the Eastlake housing project, to the west and south by private homes, to the south east by a baseball field and park and to the northwest corner by Price's Run Park.

DNREC - Property Owner Site Visits - George Gray School Property

On October 9, 1998, DNREC-SIRB staff toured the outside of the property with a representative of USA Environmental Management, Inc. (USAEMI), the oversight consultant for the property owner. Several representatives of Phase V Community Development Corporation, the property owner, then met with the SIRB Program Manager and Project Manager to discuss the project.

The primary proposed reuse of the building is a Charter School. This adaptive reuse of the building would include the additions of a culinary arts school and possible catering business, a community banquet and conference center and two cafes. Also proposed are a day care center and a recording studio.

. Historical Map Review

Review of historical maps indicates that the George Gray School property was part of the William Thatcher estate in 1876 (G. M. Hopkins), 1893 (G. Wm. Baist) and 1901 (Baist). All three maps indicate that the property was primarily open land with little development. Paper streets are shown on all three maps. The 1876 maps show a small stream across the northeast corner of the property (Figure 5).

In the 1893 map, the stream, which crosses the property and continues to the northwest, is identified as Price's Run. The surrounding properties are mostly vacant with a few small structures such as farms. An icehouse is located three blocks east and a cotton mill is located six blocks west along Vandever Avenue (Figure 6).

By 1901, a row of homes is present along Vandever Avenue between Thatcher and Locust Streets. The remainder of the property is vacant. These homes are still present today along the southwest boundry of the school property (Figures 7, 8).

The 1906 topographic map indicates that the school property is still vacant with no significant structures or roadways present (Figure 9). The 1936 topographic map shows the original wing of the school to be present. A pond is located on Price's Run in parkland to the north of the school (Figure 10).

3.0 PREVIOUS INVESTIGATIONS

George Gray School Property - 2113 Thatcher Street

The following site description for the George Gray School is derived from excerpts from the Hazardous Material Summary/Cost Proposal for the George Gray School by USA Environmental Management, Inc., January 7, 1997.

A limited investigation was conducted at the site in December 1996 to develop a list of hazardous materials present in the building that would need to be addressed prior to renovation. Items noted in the report found inside the building included Fluorescent light tubes, Fluorescent light ballasts containing Polychlorinated Biphenyls (PCBs), several drums containing unknown materials, insulation, floor tiles, debris and soil containing Asbestos, and Lead-based paint and debris. In addition, two underground fuel oil storage tanks were located on the southeast portion of the property. The report also notes that vandalism and looting have been a problem at the site and that much of the damage to the asbestos containing materials (ACM) has resulted from these activities.

Recommendations presented in the report included the removal and abatement of all accessible asbestos in the building and decontamination of all exposed surfaces, removal or stabilization of lead-based paint, removal and proper disposal of fluorescent light tubes and ballasts, characterization and disposal of drummed material. The report also recommended the removal and remediation of the underground storage tanks, supply lines and piping and any contaminated soil.

Some asbestos abatement has already been started, but is currently on hold pending funding of the project.

Decd Search

Deed Book and Page bk2245 pg177 bk2245 pg175 H115 pg142	Seller City of Wilmington Brandywine School District New Castle County School District	Purchaser Phase V of Delaware City of Wilmington Brandywine School District	Transaction Date February 28, 1997 February 28, 1997 June 24, 1981
11113 pg142	Deed record ends	Brandywine School District	June 24, 1981

4.0 ENVIRONMENTAL SAMPLING

4.1. Introduction

Sampling of environmental media was performed at the George Gray School property site in order to identify and characterize the presence of contaminants that may have been released due to historic and current activities. Test pit excavation and soil sample collection took place on December 1 and 2, 1998.

DNREC coffected 30 media samples during the BPA II, plus quality assurance/quality control (QA/QC) samples. Of this total, 12 media samples (plus QA/QC samples) were submitted to the DNREC-Division of Water Resources Environmental Services Laboratory for confirmatory analysis of chemicals of concern.

Chemicals of concern consisted of all or part of the USEPA Target Analyte List (Inorganics) and Target Compound List (Organics) (TAL/TCL) (Appendix A). Partial and/or full TAL/TCL analysis was conducted on samples based upon the results of the mobile-lab field screening. Field screened samples identified as having elevated concentrations of contaminants for a particular chemical suite were sent to the DNREC Division of Water Resources Laboratory for confirmatory analysis. Analysis included volatile and semivolatile compounds, Pesticide/PCB, metals and Toxic Characteristic Leaching Procedures (TCLP) for metals.

Soil samples delivered to the DNREC laboratory were screened in the SIRB mobile laboratory for the following classes of compounds: Volatile Organics, Pesticides, Carcinogenic PAHs, PCBs, and Metals. Screening was performed in the mobile lab using Immunoassay Test Kits, Gas Chromatography/Mass Spectroscopy (GC/MS) and an X-Ray Fluorescence instrument (XRF). Information regarding the field screening procedures is shown in Appendix B.

In the fixed lab, the GC/MS System was used to analyze soil and water samples for Volatile and Semi-Volatile Organic Compounds (VOCs/SVOCs), Pesticides and PCBs. Metals were tested using an Atomic Absorption Unit and an Inductively Coupled Plasma Unit (AA and ICP). These constituents are analyzed at sites with environmental and health impact concerns because they are commonly found in former industrial and landfilled areas. The above constituent groups comprise the EPA TAL/TCL list. Analysis using the GC/MS system and AA and ICP provides a good cursory tool in which to determine the presence or absence of compounds and analytes at sites under investigation.

DNREC sampled both the shallow and deep soil media in the area of investigation. Shallow and deep soil samples were generally collected from 0 to 2 feet and below 2 feet respectively. Deep soil samples were collected using a backhoe from test pits excavated to a maximum depth of 17' or until groundwater was reached. Test pits were used to evaluate subsurface conditions such as natural soil strata or composition of fill. Shallow and deep soil samples were taken from each test pit. The test pits were subsequently refilled and leveled using the excavated materials. The DNREC-SIRB Scientists prepared descriptive logs of the test pits that are presented in

Appendix C.

4.2. Sampling Locations

Figure 16 shows the sampling locations for the George Gray Elementary School investigation.

Sampling of environmental media was accomplished through the collection of 30 soil samples, plus Quality Assurance/Quality Control (QA/QC) samples. Sample descriptions and locations are listed in Table A.

Table A. Sample Locations and Descriptions for Test Pits and Soils

ALOJEVACIONE CO	3]B((0):41]40(0]44
SHALLOW SOIL SAM	PLES
N. of main entrance near Thatcher St., no	ear 0-12"
1924 stone	2 FB.
Inside corner of building structure	
E. of new wing, 5' W. of sidewalk	4 July 10 - 5" - 1
N. end of bldg., along Locust St.	0-6"
S. end of bldg., along Locust St	" 0-5"

SHALLOW TEST PIT SAMPLES					
3(4) (1) (4)	W. end of south asphalt parking lot, 40' off bldg.	TEST PIT, 12"			
	Center of south parking lot	TEST PIT, 12'			
	W. side of UST tank area, E. end of south parking lot	TEST PIT, 12-18"			
	S. side of UST tank area	TEST PIT, 12-18"			
	E. side of UST tank area	TEST PIT, 12"			
	10' E. of old playground, N. end of new wing	TEST PIT, 12-18"			
0.00000000	Grassed field, N. end, E. of end of new wing	TEST PIT, 12-18"			
	Grassed field, W. side, along sidewalk, E. of new wing	TEST PIT, 2'			
	NE corner of grassed area	TEST PIT, 12-18"			
	E. side of grassed area, 50' off Thatcher St. at 22 nd St.	TEST PIT, 12"			
	N. side of bldg., grassed yard, N. of sidewalk, E. door	TEST PIT, 12"			

	DEEP TEST PIT SAMPLES					
	W. end of south asphalt parking lot, 40' off bldg.	TEST PIT, 12-13'				
	Center of south parking lot	TEST PIT, 10'				
	W. side of UST tank area, E. end of south parking lot	TEST PIT, 12'				
	S. side of UST tank area	TEST PIT, 12-13'				
	S. side of UST tank area	TEST PIT, 3'				
	E. side of UST tank area	TEST PIT, 11'				
	10' E. of old playground, N. end of new wing	TEST PIT, 11-12'				
	Grassed field, N. end, E. of end of new wing	TEST PIT, 10-11'				
	Grassed field, W. side, along sidewalk, E. of new wing	TEST PIT, 11-12'				
30 (40 (40)	NE corner of grassed area	TEST PIT, 11'				
	E. side of grassed area, 50° off Thatcher St. at 22 nd St.	TEST PIT, 11'				
	N. side of bldg., grassed yard, N. of sidewalk, E. door	TEST PIT, 10-11'				
	S. side of UST tank area	TEST PIT, 3'				
	NE corner of grassed area	TEST PIT, 11'				

<u> </u>	
WATER SAMPLES	
Trip Blank	WATER, QA/QC
Equipment Rinsate Blank	WATER, QA/QC

Based on field screening results, specific samples were selected for analysis by the DNREC Environmental Services Laboratory. Samples submitted to a fixed laboratory (exclusive of QA/QC samples) for all or part of the EPA TAL/TCL analytical package included:

- o 7 shallow test pit soil samples;
- o 5 deep test pit soil samples;

The specific parameters that were requested for laboratory analysis for soils and sediment are indicated below (Table B).

Table B. Samples Submitted for Laboratory Analysis

George Gray Elementary School

X	X	x	X	Т"	1
	X				·
		•	X		· · · · · · · · · · · · · · · · · · ·
			Х	X	
	X				
	x				
	X			<u> </u>	
		i"	X	X	
·	X	ı			MS/MSD
					Dupl. TP-40
			X	<u> </u>	Dupl. TP-4C Dupl. TP-9D
	X			и):	

WATER SAMPLES							
X			14人,44	11.74	Trip Blank		
X	X	X	X :.		Rinse Blank		

VOCs - Target Compound List Volatile Organic Compounds

SVOC Target Compound List Semivolatile Organic Compounds
Pest/PCBs = Target Compounds

Pest/PCBs - Target Compound List Pesticides/Polychlorinated Biphenyls

Metals/Cyan - Target Analyte List Inorganics and Cyanide

TCLP - Toxic Characteristic Leaching Procedure Metals-As, Ba, Cd, Cr, Pb, Hg, Se, Ag

Samples Submitted to DNREC Environmental Services Laboratory, Dover, Delaware

4.3. Analytical Analysis

The results received from the laboratory analysis were compared to the following criteria: EPA Region III Risked-Based Concentration Tables (RBCs) and DNREC Uniform Risk-Based Standards (URS).

Deep and surface soil sampling analytical results were compared to the following criteria: the RBCs for industrial and residential soils and to the URS.

5.0 GROUNDWATER PATHWAY

5.1. Hydrogeologic Setting

The George Gray School property is located within the Piedmont Physiographic Province lying just

The basement rock beneath the site is part of the metamorphic and igneous derived Wilmington Complex. Meta-igneous rocks formed mainly of andesine, hypersthene, clinopyroxene and magnetite with minor amphibole underlie the majority of the site. The southwest corner may be composed mainly of hypersthene-quartz-andesine-gneisswith minor biotite and magnetite. (Figure 12) The thickness of the regolith at the site may vary from 0 to 50 feet. (Figure 13).

The water table aquifer in the Piedmont generally forms at the base of the regolith, directly above the unweathered bedrock. The depth to groundwater varies depending on the depth of the weathering and may be locally shallow. The Wilmington Complex stores and transmits groundwater almost entirely within fractures and generally in small quantities. Groundwater yields from the hard rock of the Wilmington Complex are generally low, with the yield of the average home well approximately 1 gallon per minute.

From the Fall Line south, the crystalline basement rock is overlain by the Potomac Formation, consisting of variegated clays and silts with some interbedded sands. These sands are generally thin and irregular in the northern part of the Coastal Plain. The Potomac Formation thickens to the southeast but is expected to be generally thin immediately south of the project area. The Potomac Formation is used extensively for water supply to the south of the project area where the sand layers are sufficiently thick (Figure 12).

The study area is expected to have little potential for significant groundwater supply development as a result of low yields due to low transmissivity of the aquifers and little available drawdown.

Local groundwater flow at the site is expected to be south and west towards the Brandywine Creek.

5.2. Groundwater Targets

The George Gray School property is contained entirely within the City of Wilmington's corporate boundaries. The City of Wilmington Water Department provides the potable water supply. The city utilizes surface water from Brandywine Creek for its primary water supply.

The City's closest intake is on the Brandywine Creek at a dam in Brandywine Park, 2.5 miles upstream from the confluence of the Brandywine Creek and Christina River. Water is drawn from the Brandywine Creek via a raceway with headwaters approximately 1.2 miles west-northwest of the school property. The city supplies water to approximately 140,000 individuals in the Wilmington metropolitan area and has water system interconnections with other area suppliers.

The nearest public water supply well is located at Collins Park approximately four miles to the south of the site. The Collins Park well is part of the Artesian Water Company ("AWC") supply system. The Collins Park Well serves approximately 3308 AWC customers. AWC utilizes a blended water system of over 40 wells and 12 interconnections with the Cities of Wilmington, Newark and New Castle, United Water Delaware, and the Chester (PA) Water Authority to serve

its 171,800 customers.

The remaining public water supply wells belonging to AWC, are located more than 4 miles south of the site.

The Water Supply Branch of DNREC conducted a DWUDS (Delaware Water Use Data System) search for drinking water wells located within four miles of the site.

The nearest drinking water well is over one mile to the southeast of the site. Three domestic drinking water wells were found within 1 to 2 miles of the site, one well was between 2 to 3 miles, and twenty-five wells were between 3 and 4 miles. Assuming an average of 3 persons per household, a total of 87 people are served by domestic wells within a four-mile radius of the site. This number can be expected to be higher due to wells constructed prior to 1970 when the well permitting program was initiated.

The nearest Wellhead Protection Area, as defined by New Castle County ordinance is approximately 4.0 miles to the south and east.

5.3. Groundwater Sample Locations

No groundwater samples were collected during this phase of the investigation. Historical review of the property indicates no significant sources of contamination other than filling of low lands. In addition, there are no known groundwater targets in the area.

In the event that significant soil contamination is detected at the site, SIRB may elect to collect groundwater samples from monitor wells or Geoprobe points during a later investigative phase.

5.4. Groundwater Conclusions

The groundwater at the George Gray School site is not used for domestic or public water supply. Generally, the groundwater flow direction is inferred to be toward the south and west, towards the Brandywine Creek. However, several large (6 to 9 foot diameter) combined sewer lines are present on or near the property and may affect groundwater flow direction.

The groundwater table at the George Gray property is highly variable. Groundwater was encountered in just 5 of the 11 test pits excavated on site, on top of the original marsh and streambed deposit.

6.0 SURFACE WATER PATHWAY

6.1. Hydrologic Setting

There is no surface water on or directly bordering the site.

The Brandywine Creek is located approximately 900 feet west of the subject property. Surface water coming from the site is expected to flow into the Brandywine Creek though overland flow, or into a combined sanitary and storm sewer system operated by the City of Wilmington. During major storm events, excess water may discharge to the river from Combined Sewer Overflows (CSO) located along the Brandywine Creek, just north of Northeast Boulevard.

The Brandywine Creek's mean annual discharge is 496 cubic feet per second (cfs). The Christina River's mean annual discharge is estimated at approximately 678.6 (cfs). The Brandywine flows approximately 1.5 miles to the confluence with the Christina River and the Christina joins the Delaware River approximately 1.5 miles downstream. Both streams are tidal at the point nearest the school property. The mean annual flow for the Delaware River, gauged at Trenton, New Jersey, is 11,744 cfs. The Delaware River is the surface water pathway for the remaining target distance.

According to the National Flood Insurance Rate Maps (1996), the site is approximately 20 feet above mean sea level and is located mostly within the special flood hazard areas inundated by the 100 year flood (Zone AE) along Price's Run (Figure 11). Price's Run is apparently culverted beneath the site.

The 1992 Delaware Water Quality Inventory (305b) Report Basin Assessment for the Christina River notes that several types of pollutants were found in the River. The Christina River and its tributaries have been found to have elevated concentrations of bacteria, toxic pollutants and heavy metals.

Contamination to the Christina River is derived from point sources and nonpoint sources. Surface water intakes for drinking water purposes are located on tributaries of the Christina River, including the Brandywine Creek upstream from the school area, however no public water intakes are located downstream of the site. The Christina River is a major tributary of the Delaware River and would contribute to its degradation.

6.2. Surface Water Targets

The Brandywine Creek is the site's closest surface water pathway, located approximately 900 feet west of the study area. In addition, the Christina River and Delaware River are direct targets of the site as a result of their relationship with the Brandywine.

In the Division of Fish and Wildlife's 1986-1991 Final Report, "Streams and Inland Bays Fish Survey," the tidal portions of the Brandywine and Christina Rivers were found to be used by

several non-resident species of fish for spawning and nursery habitat. Many resident species that use the Delaware River for spawning were found to reside in the tidal portions of the Christina River. The tidal portions of the Brandywine and Christina Rivers also support species with important commercial or recreational value, including catfish and several types of bass.

The Cherry Island Flats, located on the Delaware River adjacent to Edgemoor, are considered a primary spawning ground for the Striped Bass. Considerable recreational fishing occurs in the vicinity. The Delaware River also supports a sizeable commercial blue crab fishery.

Several wetlands are located along the Brandywine and Christina Rivers downstream of the Northeast Blvd. Bridge. (Figure 15)

The Delaware and Christina Rivers in addition to being designated fisheries are both used for extensively for recreation. For example, the Wilmington Rowing Club is located just north of the site on the Christina River.

6.3. Surface Water and Sediment Sample Locations

No surface water or sediment samples were collected from the Brandywine Creek located to the west of the George Gray site.

6.4. Surface Water & Sediment Conclusions

There is no surface water on or directly bordering the site

The Brandywine Creek is located approximately 900 feet west of the subject property. Surface water coming from the site is expected to flow into the Brandywine Creek though overland flow, or into a combined sanitary and storm sewer system operated by the City of Wilmington. During major storm events, excess water may discharge to the river from Combined Sewer Overflows (CSO) located along the Brandywine Creek, just north of Northeast Blvd.

No surface water or sediment samples were collected during this investigation due to a lack of a direct surface water pathway.

7.0 SOIL EXPOSURE AND AIR PATHWAYS

7.1. Physical Conditions

According to the U. S. Department of Agriculture (USDA), Soil Conservation Service (SCS) soil mapping report, site soils consist of the Neshaminy-Talleyville-Urban Land complex. It consists of well-drained Neshaminy and Talleyville soils that are used for residential and other community developments. Much of this complex has been covered with fill or grading

materials, or has had much of the original soil profile removed. (Figure 14).

Test pit logs from the George Gray School investigation indicate that the subject site has received fill materials including sands, silts, clays, gravels, rock, bricks, wood, metal, coal and coal ash, incinerator ash, slags, concrete, and glass and other miscellaneous trash and debris. Depths of fill materials encountered ranged from 2 to 13 feet. (Appendix C)

Approximately 25,600 people live within one-mile of the site with the nearest residences located across the street and bordering the south parking area.

7.2. Soil Sampling Locations

A total of eleven (11) test pits were excavated on the George Gray school site. DNREC sampled both shallow and deep soil media in the area of the investigation. Eleven (11) shallow and fourteen (14) deep soil samples were collected using a backhoe from test pits excavated to a maximum of 17' or until groundwater is reached. Test pits were used to evaluate subsurface conditions of fill. Shallow and deep soil samples were taken from each test pit. The test pits were then subsequently backfilled and leveled using the excavated materials. In addition, five (5) shallow soil samples were collected from locations near the building. All soil samples were screened in the SIRB mobile laboratory.

Of the thirty (30) soil samples collected and field screened; ten (10) were selected for laboratory analysis. Specific parameters for analysis were requested for the samples as indicated in Table B.

Analytical results were compared to the RBC values for Industrial and Residential soil or to DNREC Uniform Risk-Based Remediation Standards where appropriate.

A map showing the soil sample locations is included in Figure 16. Test pit description logs are shown in Appendix C.

7.3. Soil Analytical Results - Inorganics

Field screening of all test pit and shallow soil samples for metals were completed using the XRF instrument. Of the samples screened, (including two (2) field duplicates), six (6) soil samples (one shallow and five deep) were submitted for laboratory analysis of inorganic parameters. Two (2) of these samples were also submitted for Toxic Characteristic Leaching Protocol (TCLP) analysis. The complete XRF data sheets are shown in Appendix G.

Soil Inorganic Results - Field Screening Data

Field screening using XRF indicated elevated metals concentrations in several samples. Based on XRF results, five samples contained Lead at a concentration greater than the residential

cleanup level. Other metals noted to be elevated in selected samples included Iron, Manganese and Zinc. Samples with elevated metals were generally associated with the presence of coal or incinerator ash. (Appendix G)

Soil Inorganic Results - Laboratory Data

As a result of the field screening, six (6) deep soil samples were submitted to the laboratory for inorganic analysis. The table below lists inorganic compounds exceeding Risk-Based Concentration benchmarks or DNREC Uniform Risk-Based Standards. Complete inorganic data tables are shown in Tables 1 and 2 (Appendix F). The data validation package is included in Appendix D.

Table C. Soil Samples Exceeding Benchmarks-Inorganic Laboratory Data

Soil Sample	Analyte	Concentration (mg/kg)	RBC Residential Soil (mg/kg)	RBC Industrial Soil (mg/kg)	URS (mg/kg)
TP-48	Arsenic	8.5	0.43c	%: 3.8c	2n/0.4c
	Lead	1510	400	1000	400
	Manganese	210	r reg vila r r. we had		180
TP-2D	Iron	36400	23000		23000
	Manganese	:439	::::	•	180
TP-4C	Arsenic	10.2	0.43c	3.8c	2n/0.4c
	Lead	709	400		400
	Manganese ::	191			180
TP-9D	Arsenic	18	0.43c	3.8c	2n/0.4c
ï	Iron	44500	23000		23000
	Lead	546	400		400
	Manganese	607			180
TP-15 (dup. 4C)	Arsenic	12.3	0.43c	3.8c	2n/0.4c
T T	Lead	1450	400	1000	400
	Manganese	228			180
	Zinc	1010			1000
TP-16D	Arsenic	40.8	23n/0.43c	3.8c	2n/0.4c
	Iron	80800	23000		23000
	Lead	632	400		400
'	Manganese	735		•	180
<u> </u>	Zinc	1510		•••	1000

RBC - EPA Region III Risk-Based Concentrations, 4/12/99

URS – Remediation Standards Guidance under the Delaware Hazardous Substance Cleanup Act, 2/98 n-non-carcinogen o-carcinogen VI – as Chromium VI

In addition to the inorganic analysis performed by the DNREC laboratory, two soil samples were submitted for Toxic Characteristic Leaching Procedure (TCLP) analysis for metals. TCLP analysis tests the leaching potential of a material and determines if it classifies as a hazardous waste. Based on the results of the XRF field screening, samples were selected to include samples with higher concentrations of Lead, considered to be a contaminant of concern at the site. Sample TP-4C (2145 mg/Kg (XRF), 709 mg/Kg (Lab)) and TP-9D (920 mg/Kg (XRF), 546 mg/Kg (Lab)) were selected for TCLP analysis.

The results of TCLP analysis are shown in Table L, below:

Table D. Toxic Characteristic Leaching Procedure (TCLP) Results

Analyte	TP4C		Regulatory
	mg/Kg		Level my/kg
Arsenic	0.0296	0.0452	5.0
Barium	0.567	1.04	100.0
Cadmium	ND	ND	1.0
Chromium	ND	ND	5.0
Lead	1.59	3.07	5.0 in
Mercury	ND	ND #	0.2
Selenium 💨	0.007	0.0091	1.0
Silver :	ND	ND Hate Tab	5.0

ND - Not Detected

BOLD - Sample Concentration Exceeds TCLP Regulatory Level

TCLP analysis indicates that both samples were below the regulatory level for Lead as a hazardous waste. The other metals were also below the applicable levels.

7.4. Soil Analytical Results - Organics

Soil Organic Results - Field Screening Data

Field screening for organic compounds utilized Gas Chromatography/Mass Spectroscopy (GC/MS) for volatile and semivolatile compounds, and Immunoassay test kits for polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). GC/MS results indicated no volatile compounds in the soil samples collected at the site, however a number of samples contained significant concentrations of semivolatile compounds. These results were supported by the PAH immunoassay test kits which detected carcinogenic PAHs at estimated concentrations greater than 50 ppm in six samples. Immunoassay test kits for PCBs indicated no PCBs above the detection limit for the kits. (Appendix H)

Soil Organic Results - Laboratory Data

As a result of the field screening, seven (7) soil samples (five shallow and two deep) were submitted to the laboratory for all or part of the TCL organic analysis. Seven samples were analyzed for semivolatile organics, one was analyzed for pesticide/PCBs and one received volatile organic analysis. The table below lists organic compounds exceeding Risk-Based Concentration benchmarks or DNREC Uniform Risk-Based Standards. Complete inorganic data tables are shown in Tables 3 thru 11 (Appendix F). The data validation package is included in Appendix E.

Table E. Soil Samples Exceeding Benchmarks - Organic Laboratory Data

			RBC	Soil	URS (µg/kg)
Soil Sample	Compound	Concentration (µg/kg)	Residential (µg/kg)	Industrial (µg/kg)	
SS-4	Benzo(a)anthracene	5500	875		900
	Benzo(b)fluoranthene	5400	875		900
	Benzo(a)pyrene	4900	87	784	90
	Indeno(1,2,3-cd)pyrene	3100	875		900
	Dibenz(a,h)anthracene	1500	88	784	90
TP-3S	Benzo(a)anthracene	14000	.:: 875	7840	900
	Benzo(b)fluoranthene	14000	875	7840	900
-	Benzo(a)pyrene	11000	87	784	90
	Indeno(1,2,3-cd)pyrene	8900	. 8 75	7840	900
	Dibenz(a,h)anthracene	3400	87	784	90
TP-5S	Benzo(a)pyrene	550	87	· · · · · · · · · · · · · · · · · · ·	90
	Dibenz(a,h)anthracene	160	87		90
TP-6S	Benzo(a)anthracene	1700	875		900
	Benzo(b)fluoranthene	2000	875		900
	Benzo(a)pyrene	1400	87	784	90
	Indeno(1,2,3-cd)pyrene	940	875		900
	Dibenz(a,h)anthracene	430	87		90
TP-9S	Benzo(a)anthracene	1200	875		900
	Benzo(b)fluoranthene	1400	875		900
	Benzo(a)pyrene	1100	87	784	90
	Dibenz(a,h)anthracene	310	87		90
TP-10D	Benzo(a)anthracene	2000	875		900
	Benzo(b)fluoranthene	1800	875		900
	Benzo(a)pyrene	1400	87	784	90
	Indeno(1,2,3-cd)pyrene	1200	875		900
	Dibenz(a,h)anthracene	450	87		90

RBC - EPA Region III Risk-Based Concentrations, 10/22/97

URS - Remediation Standards Guidance under the Delaware Hazardous Substance Cleanup Act, 2/98

7.5. Air Monitoring Results

A formal air sampling program was not conducted at the George Gray Elementary School site. Air monitoring was performed during sampling and drilling activities as part of the Health and Safety Plan utilizing a Foxboro TVA 1000 Dual Photo Ionization Detector/Flame Ionization Detector (PID/FID). No readings significantly above background were noted in the breathing zone during the investigation.

7.6. Soil Exposure and Air Pathway Conclusions

A review of area records and maps indicates that the property was primarily open land with little development until approximately 1926. Soil classification in the site area consists of well-drained Neshaminy and Talleyville soils that are used for residential and other community developments. Much of this complex has been covered with fill or grading materials, or has had much of the original soil profile removed. A streambed formerly crossed the property and is now either filled in or culverted beneath or around the property.

Observations made during test pitting activities indicated that the fill materials include sands, silts, clays, gravels, rock, bricks, wood, metal, coal and coal ash, incinerator ash, slags, concrete, and glass and other miscellaneous trash and debris. The fill materials were placed on top of the original streambed or marsh deposit, consisting of gray and dark gray silts and clays. In the southwest corner, the native material appears to have been red, orange and gray clays of the piedmont. Depths of fill materials encountered ranged from 2 to 13 feet.

Approximately 25,600 people live within one-mile of the site with the nearest residences located across the street and bordering the south parking area.

The property is mostly unfenced and access is unrestricted on the majority of the property. The south parking area is paved and fenced.

Soil samples were collected from 11 test pits locations throughout the site area. Sample locations were chosen on the basis of known historic land use activities and to provide a representative coverage across the property. Soil samples were field screened for PCBs and PAHs and related pesticides using immunoassay test kits and for metals using XRF.

Based on the results of field screening, soil samples from the George Gray School property exhibited elevated concentrations of some metals, most notably Arsenic and Lead. Arsenic and Lead were both detected in shallow and deep test pit soil samples in excess of screening benchmarks of 0.43 mg/Kg and 400 mg/Kg, respectively (Residential Risk-Based Concentrations and/or Uniform Risk-Based Standards). Test pit soil samples also contained Arsenic and Lead at concentrations greater than the screening levels for Industrial soils of 3.8 mg/Kg and 1000 mg/Kg, respectively.

Elevated Arsenic and Lead concentrations were confirmed by laboratory analysis of selected

samples. Five out of six soil samples submitted to the laboratory exhibited Arsenic concentrations greater than screening benchmarks, with a high of 40.8 mg/Kg Arsenic in sample TP-16D (the field duplicate of TP-9D). Five out of six soil samples submitted to the laboratory contained Lead at concentrations above the benchmark for residential soil (URS) and two of these exceeded the Industrial soil URS. The highest concentration of Lead detected was 1510 mg/Kg. The highest Lead concentrations were detected in test pits TP-4 and TP-9 and were associated with coal or incinerator ash found in the test pits.

Iron, Manganese and Zinc were also detected in soil samples at concentrations greater than the residential URS and/or RBC's.

Two samples were submitted for TCLP metals analysis. TCLP analysis indicates that both samples were below the regulatory level for Lead as a hazardous waste. The other metals were also below the applicable levels.

Immunoassay screening and subsequent laboratory analysis of soil samples indicated no significant concentrations of PCBs to be present in the site samples.

Carcinogenic PAHs were the primary organic contaminant of concern with six out of seven samples submitted for laboratory analysis significantly exceeding the screening benchmark. The highest total PAH concentration was over 120 ppm in sample TP-3S. Sample SS-4 also exhibited significantly elevated total PAH values.

In addition to the laboratory data presented in the tables and analytical data package, the data validator also reported that the chromatograms for soil samples TP-3S, TP-10D, TP-6S and SS-4 exhibited coal ash/tar C11-C22 aromatic petroleum patterns. The results exceed HSCA guidance criteria in TP-3S.

Some general information is presented below regarding several contaminants of concern detected during this investigation.

Arsenic

Arsenic was detected above screening benchmarks in soil samples across the site.

Arsenic is found naturally in the earth's crust. It is also a by-product of smelting of metals and burning of fossil fuels. The primary use of Arsenic is in weed and insect pesticides and as a wood preservative. It is also used in lead-base alloys for hardening lead used in batteries, bearings and cable and as a rust inhibitor in antifreeze. Arsenic was also historically used in the leather tanning process.

Systemic effects of Arsenic ingestion include irritation of the digestive tract, decreased production of red and white blood cells, abnormal heart function, blood vessel damage, liver and

kidney injury and impaired nerve function.

One of the most common characteristics of ingestion of inorganic Arsenic is the appearance of dark and light spots on the skin, or small corns or warts on the palms, soles and trunk. Arsenic ingestion has also been connected to increased incidence of some forms of cancer. In contrast, there is also some evidence that small amounts (normal dietary intake) of Arsenic may be beneficial to good health.

Lead

Lead was detected above residential and/or industrial screening benchmarks by XRF and laboratory analysis in several soil sample locations.

Lead is a naturally occurring metal. It has many uses, primarily in the production of batteries. It is also common in ammunition, metal products such as solder and pipes, roofing, and shielding for x-rays. Many paints used to contain Lead. It can also be produced from the burning of fossil fuels.

Lead has been classified by the EPA as a Group B2 - Probable Human Carcinogen. While there is no reference dose or slope factor value for Lead, it is desirable to minimize Lead exposure to the extent possible, especially for children who preferentially absorb it. Children are also more sensitive to Lead anemia than adults, and young children may experience subtle neurological damage without ever exhibiting classical signs of juvenile lead brain damage, such as loss of motor skills and speech. Learning ability may be impaired due to motor incoordination, lack of sensory perception or inability to concentrate.

Lead can also affect the kidneys, the central nervous system and the immune system and can cause anemia and weakness.

Usual Lead cleanup values that are commonly considered are the 400 mg/Kg residential level generally applied by the EPA as a trigger cleanup guideline. Lead in soils in residential neighborhoods above 400 mg/Kg merits further evaluation in future efforts; i.e., evaluation of blood-lead levels. The DNREC screening level for Lead in industrial soils is 1000 mg/Kg.

Polycyclic Aromatic Hydrocarbons (Benzo (a) pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Indeno(1,2,3-cd)pyrene, DiBenzo(a,h)anthracene, Benzo(k)fluoranthene)

PAHs were detected above screening benchmarks in several of the soil and sediment samples collected throughout the site as part of this investigation.

Benzo (a) pyrene (BaP) and the others are polycyclic aromatic hydrocarbon (PAH) compounds.

They are formed during the burning of petroleum products and plant or animal materials. It is also found in coal tar, road and roofing tars and in creosote. Cigarette smoke also contains PAHs. PAHs can enter the body by breathing smoke containing the material or by ingesting it. It is not normally absorbed through the skin, but small amounts may be if the skin has contact with heavy oils containing PAHs.

PAHs have been shown to cause tumors in laboratory animals and are suspected human carcinogens.

8.0 OTHER ENVIRONMENTAL EVALUATIONS

Members of DNREC evaluated the files on the subject property for the presence of Underground Storage Tanks and Asbestos. The Hazardous Materials Summary/Cost Proposal prepared by USA Environmental Management, Inc. (USAEMI) was also reviewed.

8.1. Underground Storage Tanks

A memorandum describing the results of the DNREC Underground Storage Tank Branch (UST) review of the property is included in Appendix J.

Two Underground Storage Tanks (USTs), formerly containing heating oil are located in the southeastern comer of the property in the parking lot. The tank sizes are listed as 8000 and 10,000 gallon. The UST Branch has determined that these tanks must be removed or properly abandoned. No surface evidence of other USTs was noted, however the presence of other tanks couldn't be completely ruled out.

8.2. Asbestos/Lead-based Paint ...

Asbestos Containing Material (ACM) in the form of thermal insulation, floor tiles and debris was noted on the inside of the building. Some possible ACM may also be contained within the built-up roofing materials. DNREC-SIRB advises that prior to any demolition an asbestos survey via a State of Delaware Certified Professional Firm must be performed to identify any other possible asbestos containing materials.

Several damaged paint surfaces were tested by USAEMI for the presence of Lead. All but two samples tested contained Lead in excess of the level established by EPA as "positive". Stabilization or abatement of Lead-containing paint in the building should occur to reduce potential hazards.

8.3. Hazardous Waste

The presence of several drums of unknown material was noted in the USAEMI report. The contents of these drums should be tested to characterize the material and then the drums should be disposed of in accordance with applicable regulations.

The building contains fluorescent light fixtures that were noted in the USAEMI report. PCB containing oils were present in the ballasts associated with these light fixtures. The fluorescent tubes and PCB containing ballasts should be removed and properly disposed of in accordance with applicable regulations.

9.0 SUMMARY AND CONCLUSION

The Delaware Department of Natural Resources and Environmental Control (DNREC) Site Investigation and Restoration Branch (SIRB), in cooperation with the United States Environmental Protection Agency (EPA), conducted a Brownfield Preliminary Assessment II (BPA II) for the former George Gray Elementary School located at 21:13 Thatcher Street in Wilmington, Delaware.

The former George Gray School property currently occupies an approximately 4.0± acre block on the east side of Wilmington. The information discussed in this report is confined to the property only.

The primary proposed reuse of the building is a Charter School. This adaptive reuse of the building would include the additions of a culinary arts school and possible catering business, a community banquet and conference center and two cafes. Also proposed are a day care center and a recording studio.

The purpose of the Brownfield Preliminary Assessment II was to investigate the possible existence of released hazardous substances at the George Gray School property through the collection and analysis of environmental samples. The media sampled included surface soils and deep soils. Soil samples were field screened by the DNREC SIRB Analytical Chemist and selected samples were submitted to the DNREC Division of Water Resources Environmental Services Laboratory for analysis of specified parameters.

The analytical data generated from the collection and laboratory analysis of the environmental samples was subsequently evaluated to determine the potential for human and environmental exposures to hazardous substances.

After the completion of the BPA II, DNREC submitted the report to the EPA and State officials who will decide whether the site should undergo further investigation or obtain a "No Further Action" (NFA) designation under the Federal Superfund and/or State Site Investigation & Restoration Branch Programs.

The BPA II is intended to provide a general characterization of the environmental conditions present at the site and does not provide a 100% complete surface and subsurface assessment of the project area or individual properties. The assessments contained within are based solely on conditions at the time of sampling and the specific locations evaluated.

As part of the BPA II, 11 test pits were excavated and 30 shallow and deep soil samples were collected. Test pit logs from the George Gray School investigation indicate that the subject site has received fill materials including sands, silts, clays, gravels, rock, bricks, wood, metal, coal and coal ash, incinerator ash, slags, concrete, and glass and other miscellaneous trash and debris. Depths of fill materials encountered ranged from 2 to 13 feet.

The groundwater at the George Gray School site is not used for domestic or public water supply. Generally, the groundwater flow direction is inferred to be toward the south and west, towards the Brandywine Creek. However, several large (6 to 9 foot diameter) combined sewer lines are present on or near the property and may affect groundwater flow direction.

The groundwater table at the George Gray property is highly variable. Groundwater was encountered in just 5 of the 11 test pits excavated on site, on top of the original marsh and streambed deposit.

No groundwater samples were collected during this phase of the investigation. Historical review of the property indicates no significant sources of contamination other than filling of low lands. In addition, there are no known groundwater targets in the area.

There is no surface water on or directly bordering the site.

The Brandywine Creek is located approximately 900 feet west of the subject property. Surface water coming from the site is expected to flow into the Brandywine Creek though overland flow, or into a combined sanitary and storm sewer system operated by the City of Wilmington. During major storm events, excess water may discharge to the river from Combined Sewer Overflows (CSO) located along the Brandywine Creek, just north of Northeast Boulevard.

No surface water or sediment samples were collected during this investigation due to a lack of a direct surface water pathway.

The property is mostly unfenced and access is unrestricted on the majority of the property. The south parking area is paved and fenced and most of the remaining property is grass covered.

Soil samples were collected from 11 test pits locations throughout the site area. Soil samples were field screened for PCBs and PAHs and related pesticides using immunoassay test kits and for metals using XRF.

Based on the results of field screening, soil samples from the George Gray School property exhibited elevated concentrations of some metals, most notably Arsenic and Lead. Arsenic and

Lead were both detected in shallow and deep test pit soil samples in excess of screening benchmarks.

Elevated Arsenic and Lead concentrations were confirmed by laboratory analysis of selected samples. Five out of six soil samples submitted to the laboratory exhibited Arsenic concentrations greater than screening benchmarks, with a high of 40.8 mg/Kg. Five out of six soil samples submitted to the laboratory contained Lead at concentrations above the benchmark for residential soil (URS) and two of these exceeded the Industrial soil URS. The highest concentration of Lead detected was 1510 mg/Kg. The highest Lead concentrations were detected in test pits TP-4 and TP-9 and were associated with coal or incinerator ash found in the test pits.

Iron, Manganese and Zinc were also detected in soil samples at concentrations greater than the residential URS and/or RBC's.

Two samples were submitted for TCLP metals analysis. TCLP analysis indicates that both samples were below the regulatory level for Lead as a hazardous waste. The other metals were also below the applicable levels.

Immunoassay screening and subsequent laboratory analysis of soil samples indicated no significant concentrations of PCBs to be present in the site samples.

Carcinogenic PAHs were the primary organic contaminant of concern with six out of seven samples submitted for laboratory analysis significantly exceeding the screening benchmark. The highest total PAH concentration was over 120 ppm in sample TP-3S. Sample SS-4 also exhibited significantly elevated total PAH values.

In addition to the laboratory data presented in the tables and analytical data package, the data validator also reported that the chromatograms for soil samples TP-3S, TP-10D, TP-6S and SS-4 exhibited coal ash/tar C11-C22 aromatic petroleum patterns. The results exceed HSCA guidance criteria in TP-3S.

A review of the George Gray School property was also undertaken by representatives from the DNREC Underground Storage Tank Branch (UST) and Air Resources Branch in order to evaluate the presence or absence of underground storage tanks or asbestos. In addition, USAEMI performed a hazardous materials evaluation of the building structure. Along with the issues related to testing of environmental media, these assessments have resulted in the following recommendations:

Two Underground Storage Tanks (USTs), formerly containing heating oil are located in the
southeastern corner of the property in the parking lot. The tank sizes are listed as 8000 and
10,000 gallon. The UST Branch has determined that these tanks must be removed or properly
abandoned and the surrounding soil sampled for contamination. No surface evidence of other
USTs was noted, however the presence of other tanks couldn't be completely ruled out.

- Asbestos Containing Material (ACM) in the form of thermal insulation, floor tiles and debris
 was noted on the inside of the building. Some possible ACM may also be contained within
 the built-up roofing materials. DNREC-SIRB advises that prior to any demolition an asbestos
 survey via a State of Delaware Certified Professional Firm must be performed to identify
 any other possible asbestos containing materials.
- Several damaged paint surfaces were tested by USAEMI for the presence of Lead. All but
 two samples tested contained Lead in excess of the level established by EPA as "positive".
 Stabilization or abatement of Lead-containing paint in the building should occur to reduce
 potential hazards.
- The presence of several drums of unknown material was noted in the USAEMI report. The
 contents of these drums should be tested to characterize the material and then the drums
 should be disposed of in accordance with applicable regulations.
- The building contains fluorescent light fixtures that were noted in the USAEMI report. PCB
 containing oils were present in the ballasts associated with these light fixtures. The
 fluorescent tubes and PCB containing ballasts should be removed and properly disposed of in
 accordance with applicable regulations.

Based upon the information collected from the Brownfield Preliminary Assessment II at the former George Gray Elementary School, the DNREC SIRB identified the following issues and concerns, which need to be addressed with DNREC oversight:

- Based upon the contaminants detected in the on-site soils, there is potential exposure of
 people to contaminated soil through inadvertent ingestion and airborne dust, primarily during
 excavation,
- Potential exposure of workers to contaminated soils during excavation and construction especially in the area containing Lead and PAH concentrations,
- Two heating oil USTs are out of compliance and must be removed and the surrounding soil sampled and analyzed.
- Remediation and proper disposal of the asbestos containing materials and lead containing paint should be completed,
- Removal and proper disposal of fluorescent tubes and PCB containing oil and ballasts should be completed.

LJJ:ljj:hlb Ljj99036.DOC

FIGURES

Figure 1:	Location of the George Gray School in the State of Delaware	25
	Location of the George Gray School in New Castle County	
Figure 3:	Location of the George Gray School, Wilmington, Delaware	27
Figure 4:	Orthophotoquad of the George Gray School Property	28
Figure 5:	Historical Map of the George Gray School Area - 1876	2 9
Figure 6:	Historical Map of the George Gray School Area - 1893	30
Figure 7:	Historical Map of the George Gray School Area - 1901	3 1
Figure 8:	Historical Map of the George Gray School Area - 1901	3 2
Figure 9:	Topographic Map (1906)	3 3
	Topographic Map (1936)	
	Flood Insurance Rate Map, George Gray School	
Figure 12:	Geology of the George Gray School Area	3 6
	Thickness of the Regolith - George Gray School Area	
Figure 14:	Soils Map	38
	Wetlands in the Area of the George Gray School	39
	Soil Sample Locations at the George Gray School	
	_ ··· · · · · · · · · · · · · · · · · ·	

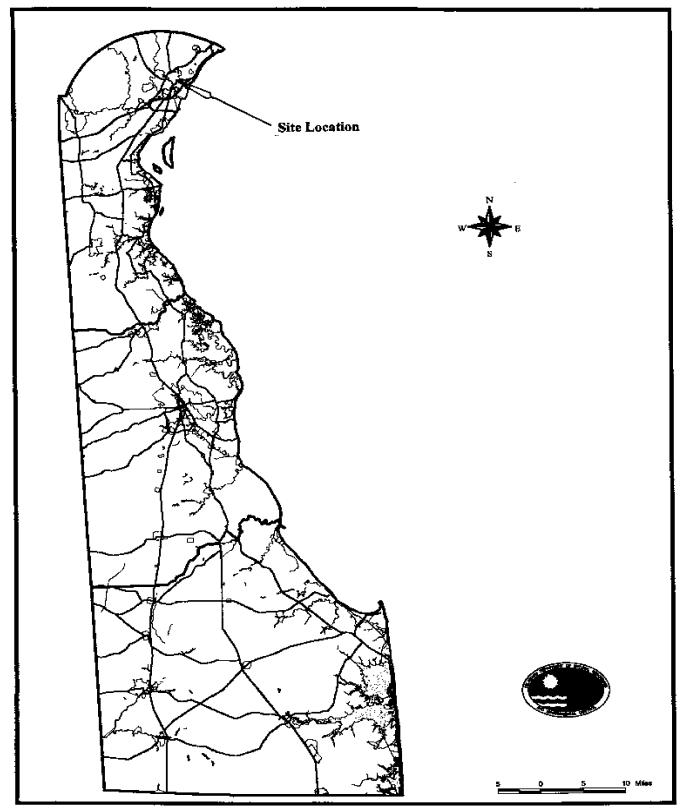


Figure 1: Location of the George Gray School in the State of Delaware

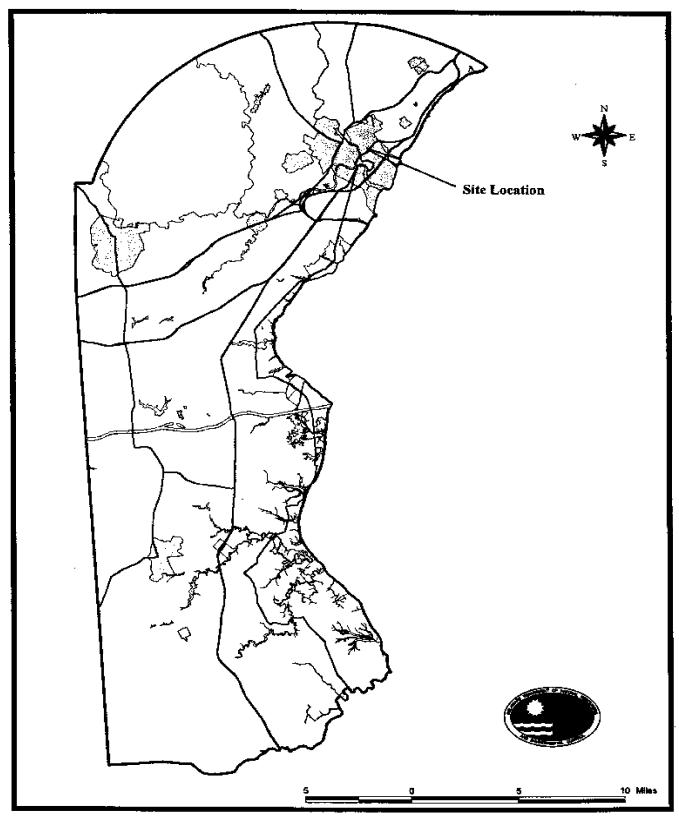


Figure 2: Location of the George Grav School in New Castle County

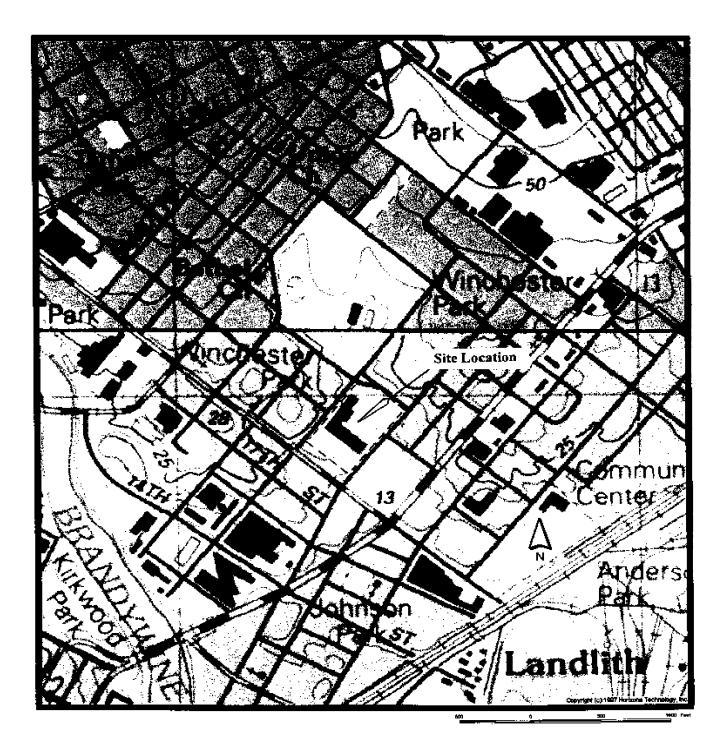


FIGURE 3. Location of George Gray School, Wilmington, Delaware

Orthophotoquad of the George Gray School Property

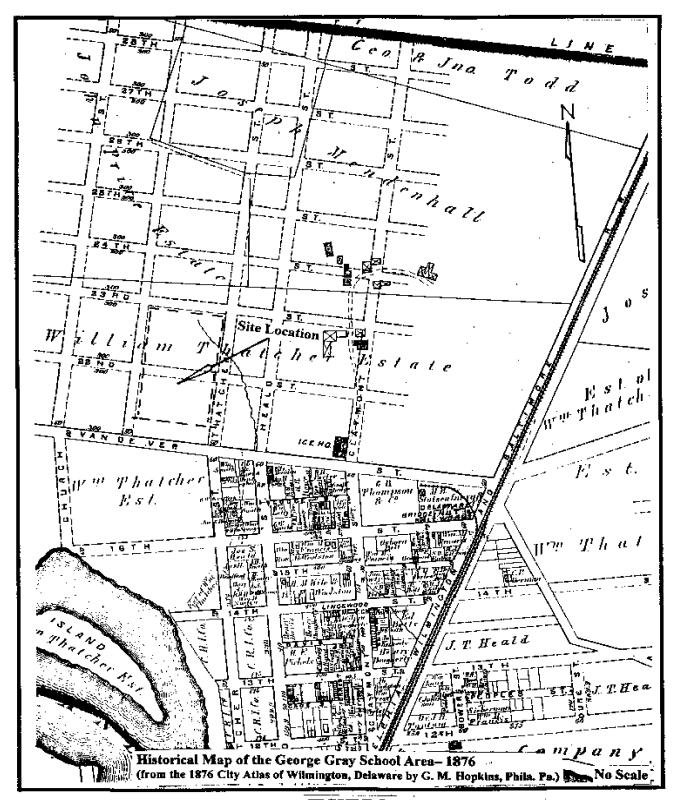
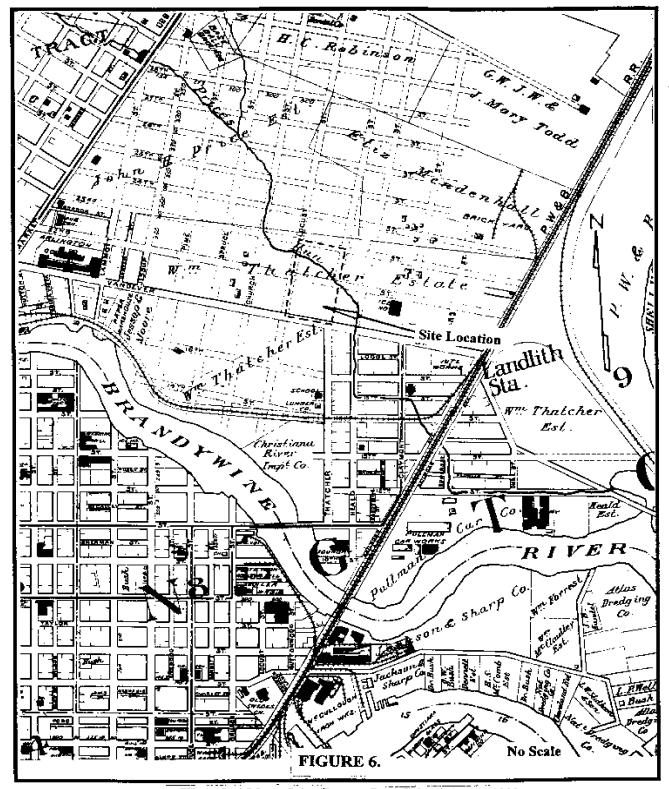



FIGURE 5.

Historical Map of the George Gray School Area-1893 (from the 1893 Map of New Castle County by G. Wm. Baist, Phila. Pa.)

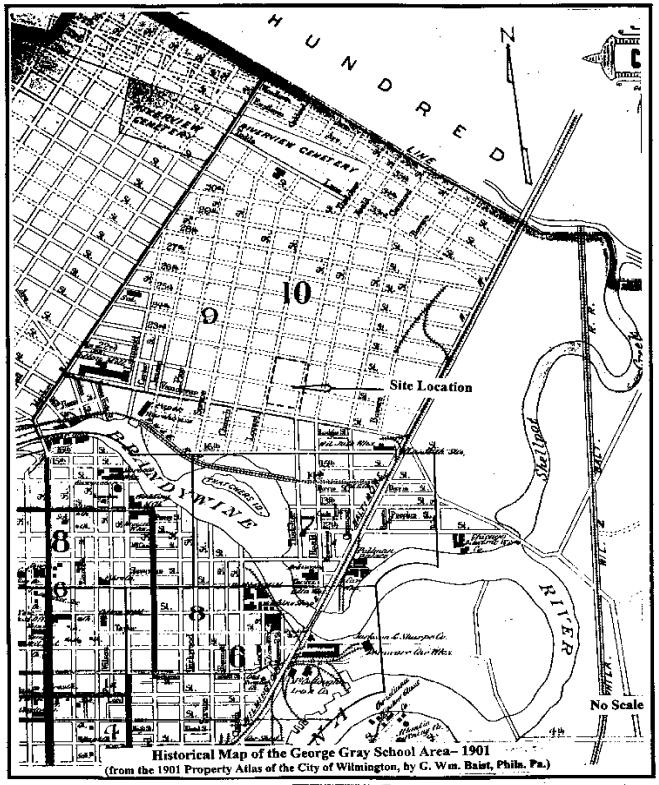
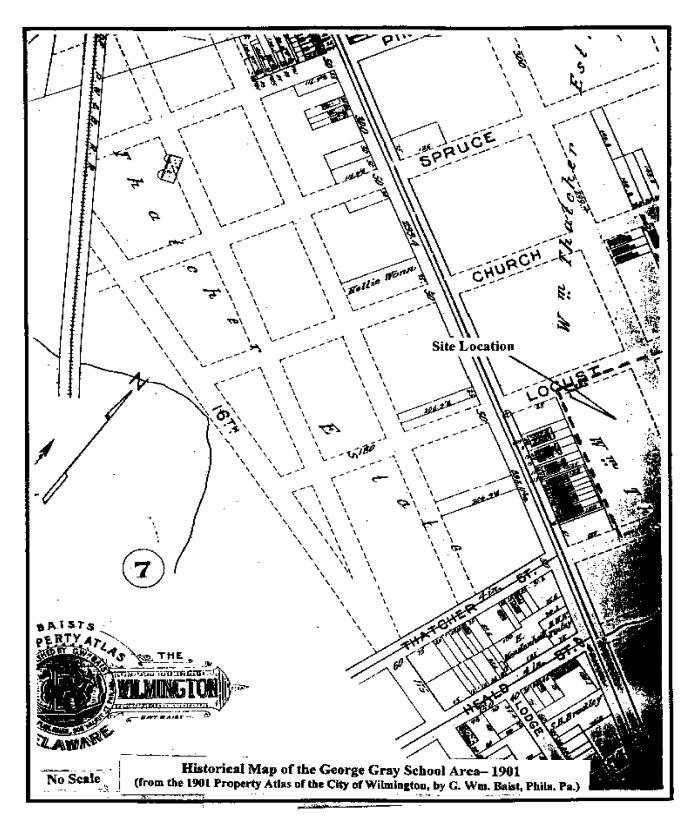
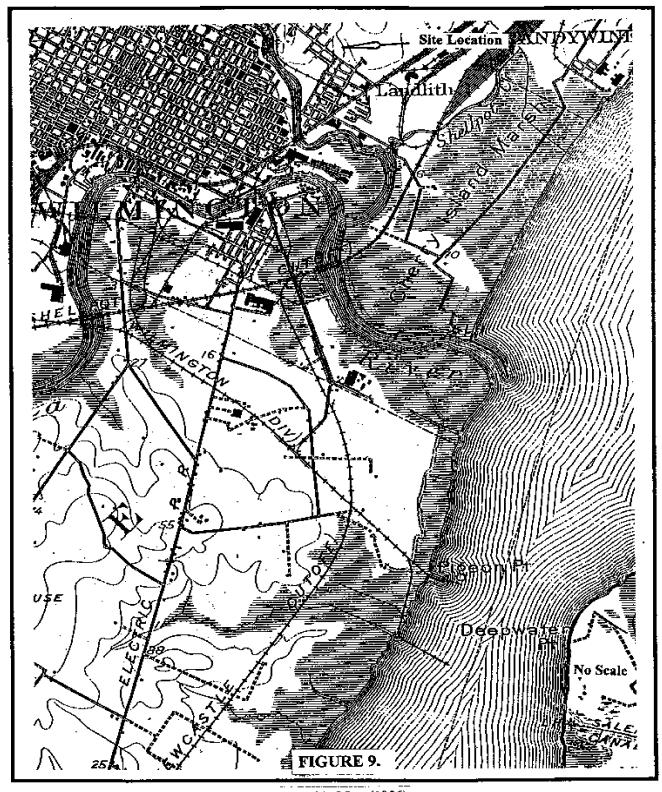
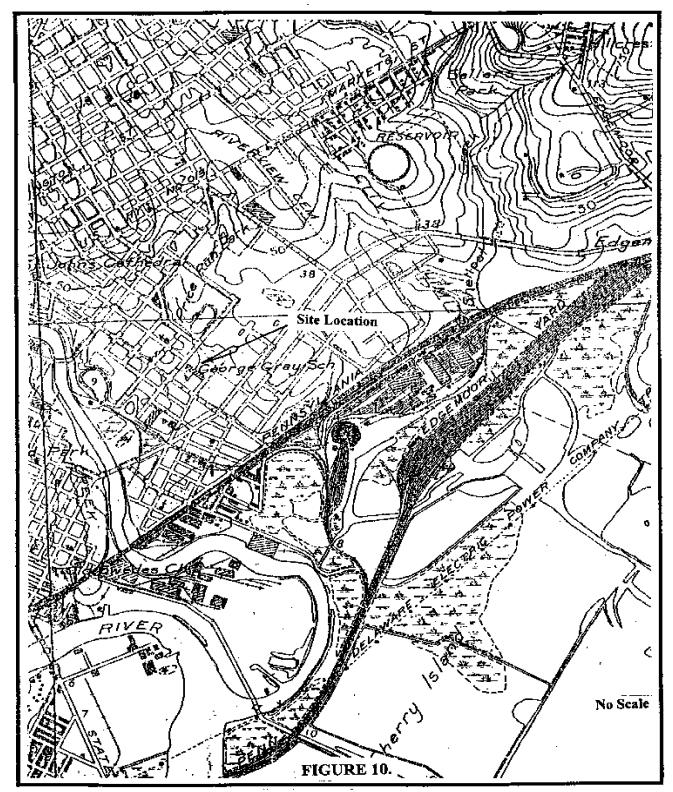
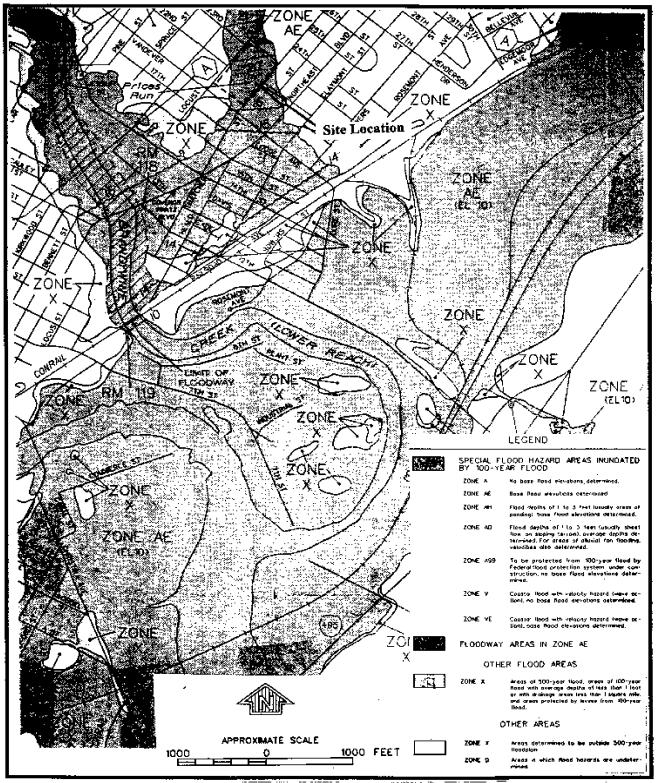
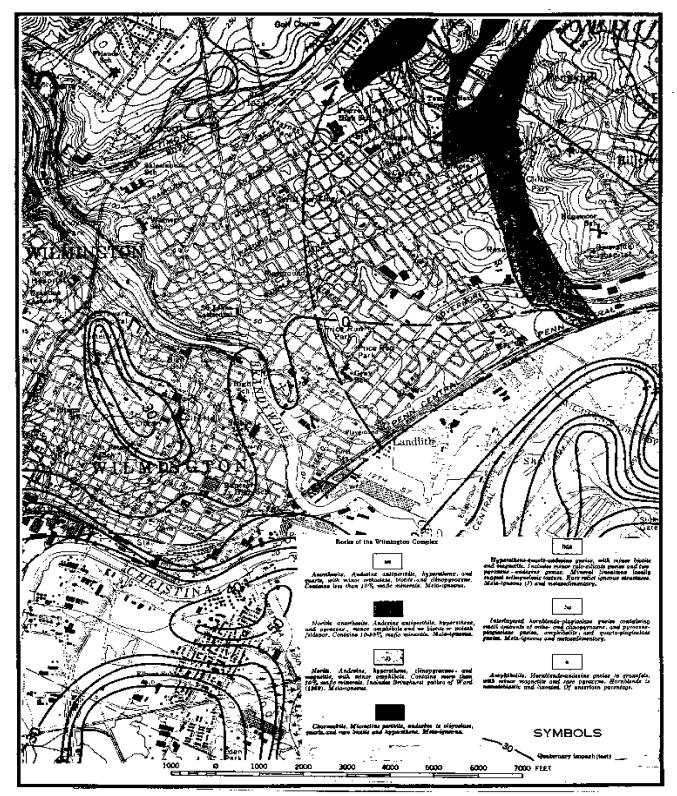


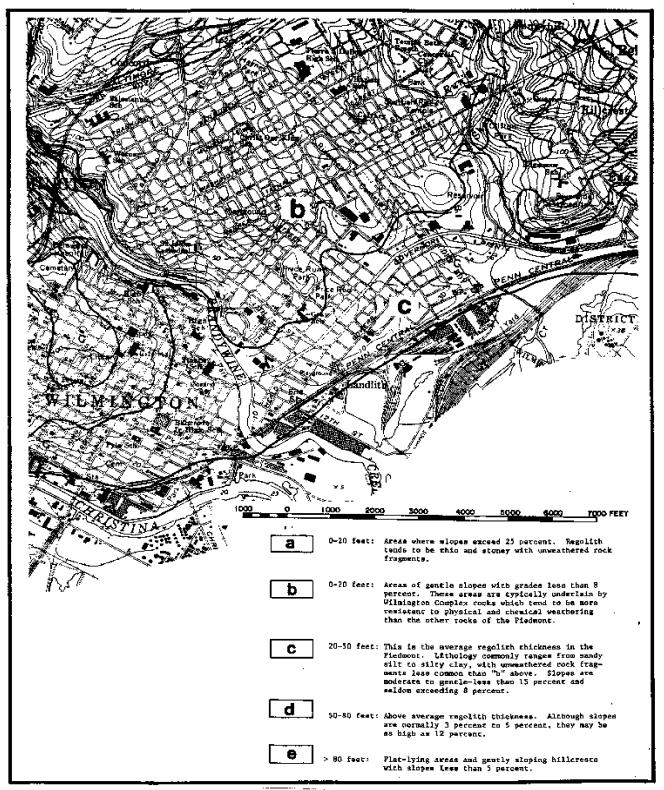
FIGURE 7.


FIGURE 8.


Topographic Map (1906)

Topographic Map (1936)


Flood Insurance Rate Map, George Gray School (from the National Flood Insurance Program, 1996) FIGURE 11.

Geology of the George Gray School Area

(from Geology of the Wämington, Area, Delaware, Delaware Geological Servey, Woodruff, K.D. and A.M. Thompson, 1975)

FIGURE 12.

Thickness of the Regolith - George Gray School Area

(from Thickness of the Regolith in the Delaware Piedmont, Delaware Geological Survey, Christopher, M.J. and K.D., Woodraff, 1982)

FIGURE 13.

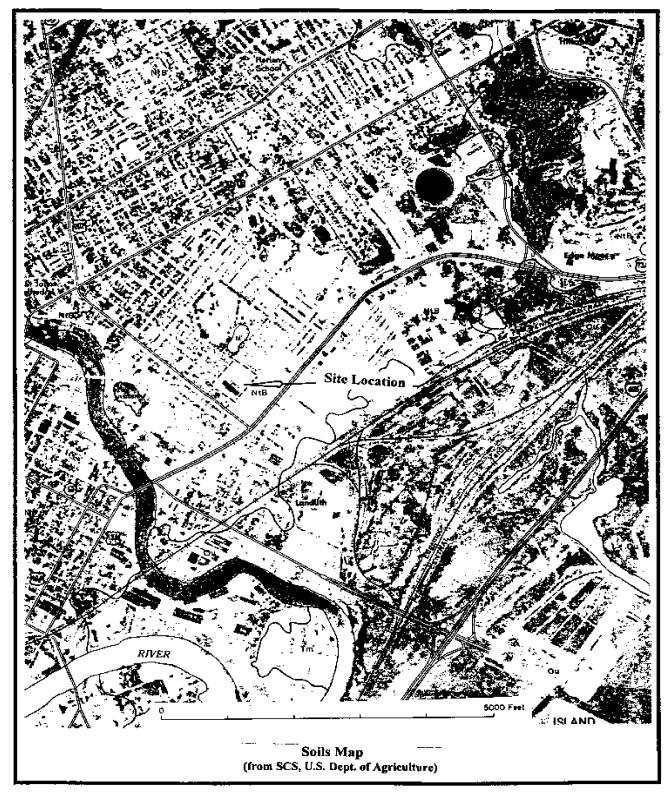


FIGURE 14.

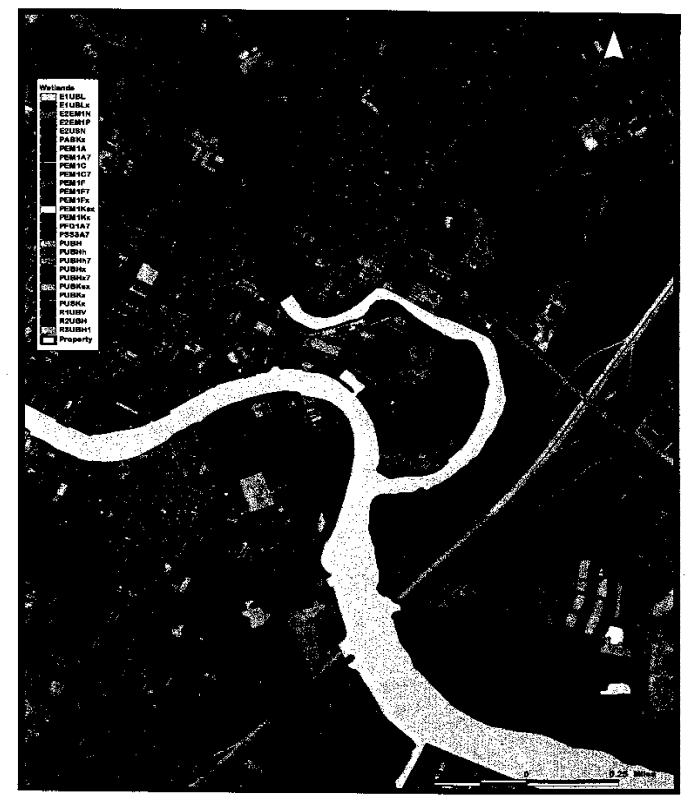


Figure 15. Wetlands in the Area of the George Gray School

Figure 16. Soil Sample Locations at the George Gray School

PHOTOGRAPHS

Photograph 1. South Parking Lot – George Gray School

Photograph 2. Field - North East Side of School

Photograph 3. Hazard Signs for Asbestos and Lead – Inside Remediation

Photograph 4. Test Pit #1, Native Material

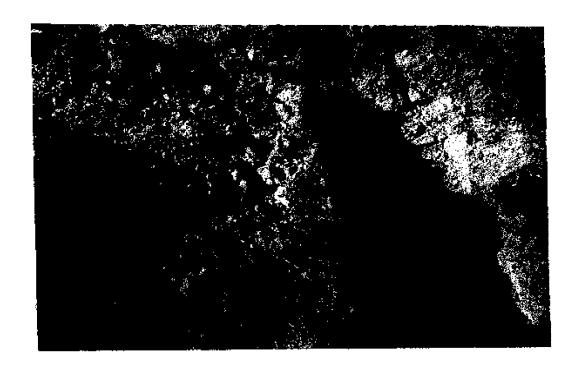
Photograph 5. Test Pit #4, Coal/Incinerator Ash Material

Photograph 6. Test Pit #10, Clay and Peat Layer 16' Level

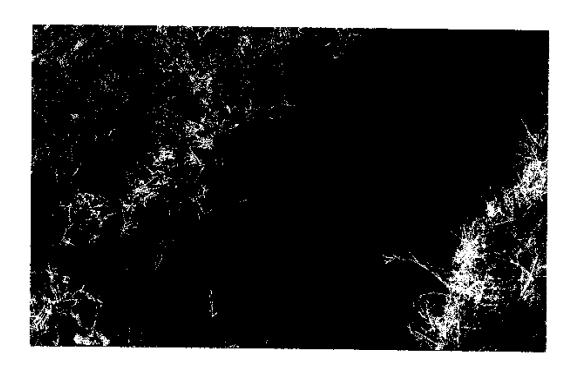
Photograph 7. Test Pit #9, Ash and Brick Layer, 0-3' Level

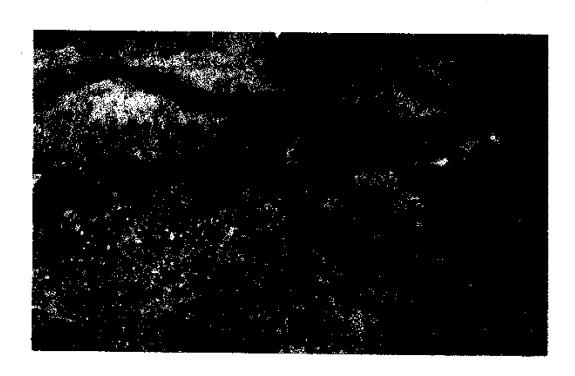
Photograph 8. Test Pit #9, Gray Ash Layer 72(1)

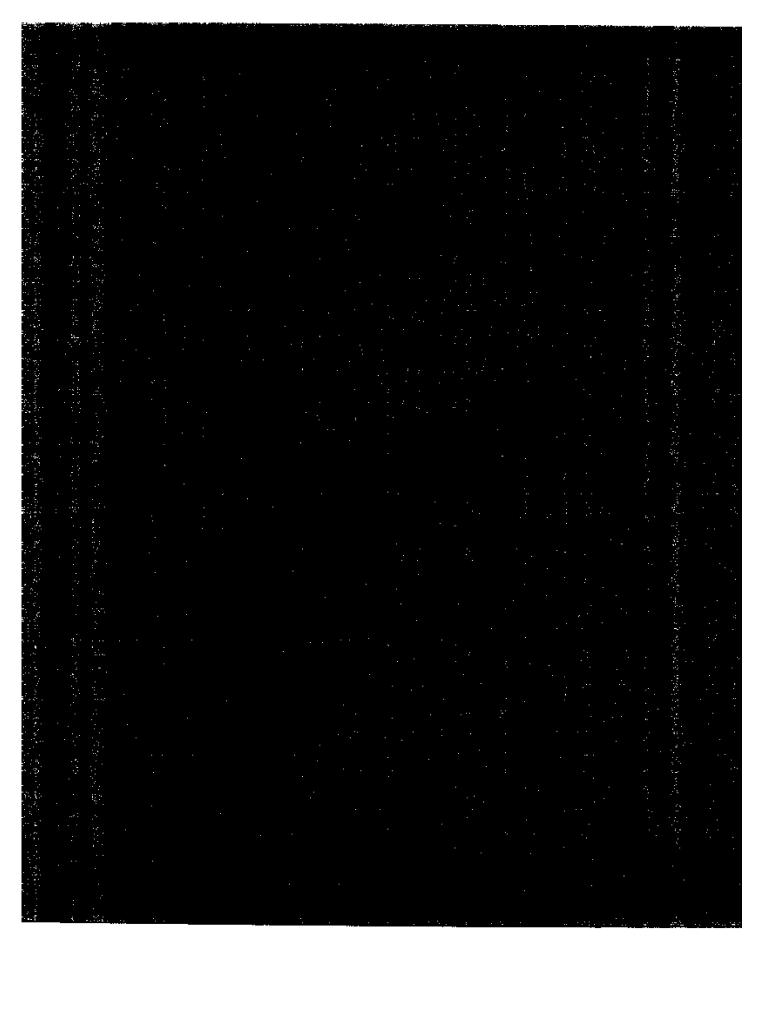
Photograph 1: South parking lot - George Gray School

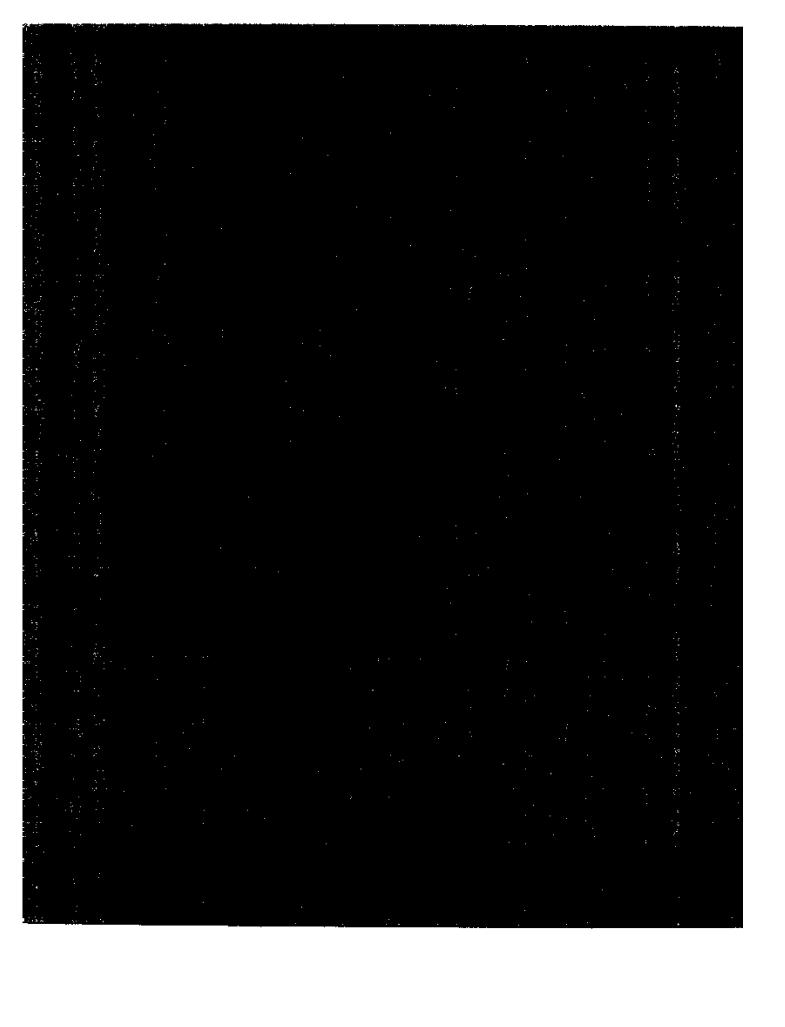

Photograph 2: Field - Northeast side of school


Photograph 3: Hazard signs for asbestos and lead - inside remediation


Photograph 4: Test Pit #1, native material


Photograph 5: Test Pit #4, coal/incinerator ash material


Photograph 6: Test Pit #10, clay and peat layer 16' level



Photograph 7: Test Pit #9, ash and brick layer, 0-3' level

Photograph 8: Test Pit #9, gray ash layer 7-11'

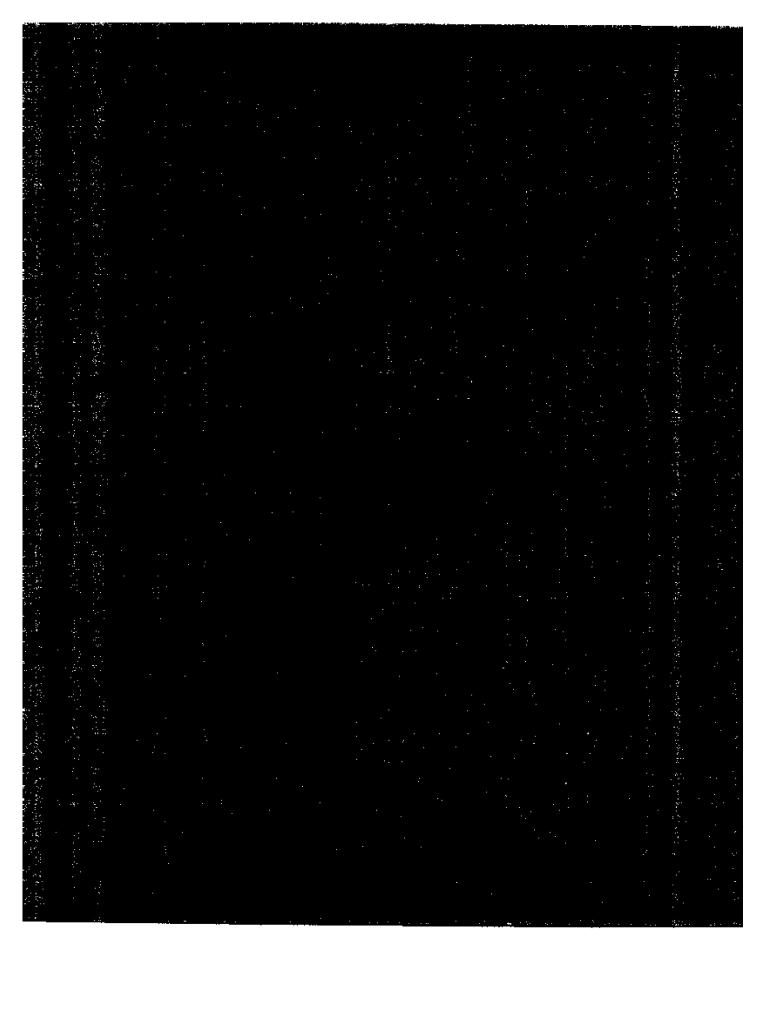
TAL METALS

Aluminum Antimony Arsenic Barium Berylium Cadmium Calcium Chromium Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Nickel

Potassium
Selenium
Silver
Sodium
Thallium
Vanadium
Zinc
Cyanide

TCL VOLATILES

Chloromethane	2-Butanone	2-Hexanone
Bromomethane	Bromochloromethane	Tetrachloroethene
Vinył Chloride	1,1,1-Trichloroethane	1,2-Dibromoethane
Chloroethane	Carbon Tetrachloride	Toluene
Methylene Chloride	Bromodichloromethane	1,1,2,2-Tetrachloroethane
Acetone	1,2-Dichloropropane	Chlorobenzene
Carbon Disulfide	cis-1,3-Dichloropropene	Ethylbenzene
1,1-Dichloroethene	Trichloroethene	Styrene
1,1-Dichloroethane	Dibromochloromethane	Xylenes (total)
1,22-Dichloroethene (total)	1,1,2-Trichloroethane	1,2-Dibromo-3-chloropropane
cis-1,2-Dichloroethene	Benzene	1,3-Dichlorobenzene
trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	1,4-Dichlorobenzene
Chloroform	Bromoform	1,2-Dichlorobenzene
1,2.Dichloroethane	4-Methyl-2-pentanone	1,2,4-Trichlorobenzene


TCL SEMIWOLATILES

Phenoi	4-Chloro-3-methylphenol	N-Nitrosodiphenylamine
bis(2-Chloroethyl) ether	2-Methylnaphthalene	4-Bromophenyl-phenyl ether
2-Chlorophenoi	Hexachlorocyclopentadiene	Hexachlorobenzene
1,3-Dichlorobenzene	2,4,6-Trichlorophenol	Pentachlorophenol
1,4-Dichiorobenzene	2,4,5-Trichlorophenol	Phenanthrene
1,2-Dichlorobenzene	2-Chloronapthalene	Anthracene
2-Wethylphenol	2-Nitroaniline	Carbazole
2,2'-oxybis(1-Chloropropane)	Dimethylphthlate	Di-n-butyiphthaiate
4-Methylphenol	Acenaphthylene	Fluoranthene
N-Nitroso-di-n-propylamine	2,6-Dinitrotoluene	Pyrene
Hexachloroethane	3-Nitroaniline	Butylbenzylphthalate
Nitrobenzene	Acenaphthene	3,3'-Dichlorobenzidine
Isophorone	2,4-Dinitrophenol	Benzo(a)anthracene
2-Nitrophenol	4-Nitrophenol	Chrysene
2,4-Dimethylphenol	Dibenzofuran	bix(2-Ethylhexyl)phthalate
bix(2-Chloroethoxy) methane	2,4-Dinitrotoluene	Di-n-octylphthalate
2,4-Dichlorophenol	Diethylphthalate	Benzo(b)fluoranthene
1,2,4-Trichlorobenzene	4-Chlorophenyi-phenyl ether	Benzo(k)fluoranthene
Naphthalene	Fluorene	Benzo(a)pyrene
4-Chloroaniline	4-Nitroaniline	Indeno(1,2,3-cd)pyrene
Hexachlorobutadiene	4,6-Dinitro-2-methy/phenol	Dibenz(a,h)anthracene

Benzo(g,h,l)perylene

TCL PESTICIDES / PCBs

alpha-BHC	4,4'-DDE	alpha-Chlordane
beta-BHC	Endrin	gamma-chlordane
delta-BHC	Endosulfan II	Toxaphene
gamma-BHC (Lindane)	4,4'-DDD	Aroclor-1016
Heptachlor	Endosulfan sulfate	Aroclor-1221
Aldrin	4,4'-DDT	Aroclor-1232
Heptachlor epoxide	Methoxychlor	Aroclor-1242
Endosulfan I	Endrin ketone	Aroclor-1248
Dieldrin	Endrin aldehyde	Aroclor-1254
		Aroclor-1260

OHMICRON

PCB Sample Extraction Kit

Intended Use

For use in conjunction with RePID PrepTM Soil Collection Kit and the PCB RePID Assery® Kit for determination of PCB in soil.

Principle

Before the 1970 regulations of the Tuzic Substances Control Act were put in place, polycidoriested biphanyls PCBs) were produced in the United Status for me in a wide veriety of industrial applications including electrical transformers and capacities, paints, take and puzzicies. The chemical and physical stability of those compounds can had in long turns environmental problems. The non-point structure of this class of compounds impacts a hydrophobicity that allows PCBs to advoir readily to sail and other solid surfaces. According that the remaining of the PCB content of sails suspected of content and appropriate decisions regarding site charmon and remediation.

The respects contained in the RaPID Prep PCB Sample Extraction Kit have been optimized for fest, efficient removed of PCB from soil and convenient preparation of the sample for immuneassay at favels of interest to the investigator. The system allows for reliable, convenient and cost affective determinations at the field testing or reproduction site.

Description of Contents

- PCS Extraction Solution
 100% method with solid dispersion agent,
 per kit: 20 bottles containing 20 mL such
- PCS Extract Diluent Buffurnd zelias sakulion containing preservatives and stabilizers without any detectable PCS, per kit: 20 vists containing 25 ml. each
- 3. Teranty five microliter precision pipet.
- Feminty two macrollies precision piper
 Piper tios
- pur kit: 21 disposable plastic tips
- Chain of centudy container labels, per kit: 30 labels for allowed vigits

- Reagent Storage and Stability

Start of respects and components in a dry well ventilated some α 2-30°C. Respects may be used until the expiration date shown on the viels.

Consult local, state and federal regulations for proper disposal of all suggests.

Materials Not Provided

In addition to the materials provided, the following Items will be necessary for the performance of the procedure;

- RaPID Pres Seil Collection Kir
- · stopwatch or clock with second hand
- permanent marking pun
- protective gloves
- digital balance (optional, evallable from Obsaicam)

Sample Information

This kill was velidated for use with soil samples. Other types of sample matrices and solid wastes may require different procedures to extract PCB.

• Procedural Notes and Precautions

On not use any reasonat beyond its stated shelf life.

Sixty seconds of continuous egitetion of the soil sample in the

presence of the extraction sakution is important for good extraction officiency. Use of a one minute timer or stopwetch to assure adequate chaking time is recommended.

Avoid contact of extraction salution (100% anniheral) with skin and nuccess membranes. If this aregent comes in contact with skin wash with water,

The twenty five microliter pipet is considered disposable and should be discorded after the bit reagents are depleted.

Due to the large diletion factor used, the accuracy of the final result will depend in past on the care taken in pipelting the sail extract into the diluent.

Limitations

The PCB Sample Extraction Kit, when used in conjunction with RaPID Prop Sail Collection Kit and the PCB RaPID Assay, will provide acrosming results. Positive results may need to be confirmed by a non-remunological method.

Extraction/Filtration Procedure

Rend the Procedural Notes and Processions and the RePIC Prep Sed Collection bit sackage insert before proceeding. Various soil sampling options are presented in the Soil Collection Xit package insert

- Write sample information on the labels provided for selftoffection device, extract collection visits and PCB Extract Diluent visits. Apply labels to appropriate vessels.
- 2. Sempling: Remove the screw cap from the soil collector and collect soil by volume or by weight as follows:
- 2.1 If y volume: With the plunger fully depressed (peshed to the top of the tebel, such soil into the upon one of the collection rube. Unsure the plunger rod from its planger by turning the handle counterclockwise. Larget he sail flush with the top of the collector tube using the plunger rod. Using the lass partion of the handle, push the soil sample and the plunger to the bettom.

2.2 By weight oxing digital balance:

Option 1. Remove some cap. Then the soil collector with its plunger rod. Collect the soil "By volume." level it off and push the soil and plunger to the bottom of the tube. Reattesh plunger red and weigh the tube containing the soil. Subtract original weight from finel weight to determine soil weight. Record the weight of the soil.

Option 2. Remove the screw cap and planger and from an empty abbretion tobs. Position the planger at the bottom of the collection tobs. Attach the rad base gives provided and place the tobs in an exhibit perition on the belonce and tere weight. Weigh 10 ± 0.1 gram of soli into the table. Record the set weight.

3. Extraction

- 3.1 Position the soil collection tube containing a sell sample upwight is the Styreform rack.
- 3.2 Poor the contents of one visit of PCS Extraction Solution into the collector. Screw the cup furthout filter) as lightly and make ours that the luor cap is secured.
- 3.4 SHAKE VIGORDUSLY AND CONTINUOUSLY FOR AT LEAST 80 SECONDS. Additional staking may be required to break up large or day soil aggregates.
- 3.5 Position the collection tube upright in the rack and above the mixture to matte at least line minutes.

If batch processing is desired, up to 21 and samples with edded

RAPID PREP™ FLOWCHART: PCB SOIL EXTRACTION PROTOCOL

SALINPLING

Kit, collect solt by weight (10 g) or Using the Soff Semple Collection volume as directed (see package Device from the Soll Collection insert for discussion).

For samples 500 ppb to 4а окситюм эсиеме

Add 25 µl. of fittered extract to a vist of PCB Extract Diluent 10 ppm: (25 m).

Cap and mix by by Inverting

several times. Factor = 2000.

2 EXTRACTION

Extraction Solution to the Collection Device. Add 20 mL (entire contents) of PCB Replace cap (without filter). Let stand for 5 minutes. Shake for 1 minute.

DILUTION SCHEME

For samples 50 ppm to extract to a vial of PCB Extract Diluent (25 mL). Add 25 µL of filtered 1000 ppm:

extract (from 1st dilution) to 2.5 mL of PCB RaPID Add 25 µL of diluted

Factor = 200,000. Mix thoroughly. Assay Diluent.

ASSAY LΩ

Analyze dliuted extract as "sample" according to the PCB RaPID Assay procedure (see reverse).

Multiply results of extracted soil samples by appropriate **Jactor**.

Remove luer cap and fitter extract into Remove screw cap and attach Filter Cap. Attach plunger rod to device. Extract Collection Vial.

For Ordering or Technical Assistance Contact:

Ohmicron Environmental Diagnostics, Inc.

800 544-8881 215 860-5115

FAX 215 860-5213

PCB Rapid Assay Kits 30 Tests 100 Tests Part # A00133 # A00134

A00127 A00137 RaPID Prep Soil Collection Kit RaPID Prep PCB Sample Extraction Kit

PCB in Soil

Intended Use

事物意应。

For detection of Polyciderinated Biphanyts (PCSs) in smil.

Materials Required but Not Provided

Reft) Prayers Sell Celesties Kit and PCB Sample Extraction Kit.

Procedural Notes and Precautions

Propers will complete for enalysis according to the procedure given in the PCB Sample Extraction Kill. then, follow the immuneatesy presentation us described in the PCB RAPIO Assey® Kill package insure.

As with all immensurary, a consistent technique is the key to aptimal purfermence. To obtain the gravitest practices, he easy to treat each tube in us identical manner.

Add reagents directly to the bettern of the tube while <u>avoiding</u> context between the reagents and the pipel 1(p. This will help essure consistent questition of reagent in the best mixture.

Avaid cross-contaminations and correspond of respect by using clean pipets for each sample addition and by avaiding contact between reagant droplets on the labes and pipet tipe.

Quality Control

A control volution at approximately 3 pph of PG8 (ex Aracler 1254) is provided with the PG8 RaPID Assay kill. It is recommended that it be included in every run and treated in the same manner as unknown symples. Date the control moute are connected for the distinct factors (see Results section) as acceptable result should be 2000 times (for value statud on the visit in, 0.0 + 1.2 ppm.

• Results

Multiply the number and central results by the appropriate dilution factor introduced by the collection, actnetion and actnet dilution steps. When the collections intraction dilution steps. When the collections is it performed with a ten grant self-exemple Extraction Kit is performed with a ten grant self-exemple, the RaPID Assisy result is multiplied by 2000 to dilute the result of the self-exemple. Alternatively, program the RPA-1 Assisyer as listed below to automatically correct for this dilution factor.

Using the RPA-IT* RaPID Analyser, collection curves can be automatically calculated and stend. Refer to the RPA-I operating stemps for detailed instructions. To obtain names from the PCB RePID Assey on the RPA-I the following paremater settings are

Pérmissanduri: Lin. Regression
Date Reduct : Lin. Regression
Xilemation : LeiLogitt
Rued Made : Absorbacce
Wevelength : 450 pm;
Unite : PPM
Rigt Bill : 0

Collectors: # of Cala : # # of Reps : #

Concentrations:
#1: 0.00 PPM
#2: 0.50 PPM
#3: 2.00 PPM
#4: 30.00 PPM

Range : 0.20 - 10.00 Cermistian : 0.990 Rep. %CV : 30%

Expected Results

In a study with 18 samples including both field contaminated and analytically splited soils samples, the HePO Purp PCB Sample Extraction KH mustbe were alread in severate well with a pay chromotographic method $\dot{v}=0.005$).

Performance Data

Reagn of Detection

The PCB RaP10 Assay has a range of distaction in soil of 500 ppb to 10 ppm when used in conjunction with the PCB Sample Extraction Kit.

Accessory

PCB recovering will vary departing an self type, retention mechanism, solvent and extraction apparetts used, length of extraction period and levels of potentially interfacing salistomes in the self.

Two (2) soils of the clay and learn type were fortified with PCB (Aracler 1254) to final soil concentrations of 8, 50 and 500 pps. Average recovery of odded PCB was 85%. Results ranged from 74 to 161%.

Precision

The overall coefficient of variation (%CV) for PCS measurement in anil spiked at 4 ppm using the RePID Prep components and PCS RePID Assay is less than 20%. This represents the emerge of variability expected when a homogeness will sample undergoes ten replicate collections, extractions and obstions generating ten invancement years (see the collections and obstions generating ten invancement years).

	Sample Callectics		
Mathed	by weight	by volume	
d of replicates	10	10	
nem en resulte (ppm)	3.20	3.47	
W CV	15.2	18.3	

Assistance

For ordering or technical assistance content: Obmicron Environmental Diagnostics Solds Department Newtown, Pensylvenia 18940 (8000544-8881 * Faul215)880-5213

Availability

Olymicros

PCB RuPID Assay
30 Test Kit
100 Test Kit
PCB Semple Dilument
PCB Proficiency Samples
RePID Prop Self Caldection Kit
RePID Prop PCB Sample Extraction Kit

, marel

W172004

-2-

Carcinogenic PAHs Sample Extraction Kit

Intended Use

For use in conjunction with RoPit) Prop^{use} Sell Collection III; and the Curcinogenic PAHs RoPit) Assay⁴⁸ Kit for intermination of Consumerors: PAVs in soil.

Principle

Polymether or judycyclic aromatic hydrocurions (PAHs) are a group of compounds composed of two or more fused aromatic riage. The U.S. EPA has identified 16 annihilitated PAHs at grierity polistants. The series (7) PAHs that are typically considered to be probable or percisis human carcinopers are inexploited tracase, chrysma, beauth Phorenthian, beauth/featurathen, Bestelajnymen, industij, 2,3-ciljayena, dibestrija, kjantierscam, Benezielpyrone is the most patent curcinegers query the PAHs. Curcinganic PAHs are introduced late the environment as a product of natural and focal (not combestion. As a source of constructional contemination, PAHs are a period problem at manufactures gos plants (MGP), coking operations, wood preserving sites that use creases as a preservative and patrochemical wests disposal situs. The large number of these sites which are contaminated by curvinguis: Philip is sell and grandwater has ind federal and state agencies to musicia their chan-up. These agencies have not various regulatory invols for carcinoganic PAHs in and, he waster the wood concentrations of interest are less than ? pers. Accorde determinación of the carcinografic PAH contrat al continuinted sells is executary to make appropriate decisions Operang also chapsup and remodistics.

The respects contained in the RaPO Prop Carcinograin PAHs Sumple Extraction ICI have been applicated for fast, efficient removal of Carcinograis PAHs from and and convenient preparation of the sample for immensessay at levels of laterary to the invertigator. The system allows for reliable, communicat and cost officetion determination; at the field texting or recording on with.

Description of Contents

- 1. Carcinogenic PAHs Extraction Solution Metherni with self dispersion agent. per kill. 20 betthe containing 20 mt such
- 2. Carcinograis PAHs Extract Dilease Buffered salles subtion cantables preservatives and stabilizars milihout any distantishie Coremogram PAHs. per life: 20 vinte containing 0.2 ml, parts
- Chain of custody container labels, per kit. 38 labels for diluont visits

Reagent Storage and Stability

State of reagents and comparents in a dry well restituted area at 2.30°C. Reagents may in used until the expiration data shows on

Committ learn, state and federal regulations for proper disposal of all Section 2.

Materials Not Provided

in soldition to the materials provided, the following items will be meaning for the performance of the procedure:

- · RePO Proc Sal Calberine Tie
- Stephenick or chick with second to
- · Mercand methy per
- protective planes digital behave (pp
- digital habano (sprimal, available from SDQ)
 processin piper and tipe capable of delivering 200 μL.

Sample Information

This lik was reliabled for ese with and samples. Other types of comple matrices and said wester may require different procedures te extract Carcinomaie PAHz.

Procedural Notes and Precautions

Do not use any magnet beyond its stated shalf the

Sixty seconds of continuous agitation of the sell ranges in the prosects of the extraction solution is important for good extraction efficiency. Use of a can minute timer or stepreseich to accure edicante shekine time is recommended.

Avoid contact of extraction solution busthead with ship and enucous monthranes. If this range at comes in contact with skin union with water.

Our to the large dilution factor used, the ecouracy of the final result will depend in part on the care taken in planting (in said arrived isto the diluent

Umitations

The Coreinogenic PAHe Sample Extraction ISt, wh د اسمه comparation with RaPIO Prop Soil Collection ICI and the Carcinogenic PAHs RaPID Assay, will provide screening results Positive results may must to be confirmed by a see a اسانحه

Extraction/Filtration Procedure

Read the Procedural Nature and Processions and the RePIO Prog Sell Codection kit package insert before preceeding. Vertexe sell cumpling aptions are presented in the Suf Collection III package

- 1. Write sample information on the labels are ideal for sail collection device, extract collection visits and Carcinogenic PANs Extract Dissert visits. Apply laters to appropriate vessels.
- 2. Sampling: Runove the screw cap from the sail collector and collect coil by volume or by weight as follows:
- 2.1 By relians: With the planger fully depressed (pedial to the top of the fulse), pack soil into the open and of the collection tube. Uncome the plunger and from its plunger by terming the headly counteredoctories. Level the sail flush with the top of the collector take using the plunger rad. Using the best portion of the bundle, perch the soil temple and the plunger to the bettom.

2.2 By weight axing digital baloosa:

Option 1. Remove series map. Two the sell collector with its plumper red. Collect the soil "By volume," level it all and push the and and phosper to the bottom of the twin. Assettanh phosper red and weigh the take containing the sell. Subtract original weight from final weight to determine sell weight. Record the se

Option 2. Remove the screw cup and plunger red from m analyce collection tule. Position the plunger of the better of the collection take. Attack the red base piece provided and piece the take to se upright position on the behaves and two weight. Whigh 10 \pm 0.1 gram of nollists the tube. Flacurd the self-neight.

3. Extraction

- 3.1 Problem the sell collection take containing a sell couple spright in the Stymform rack.
- 3.2 Pour the contents of one viel of Carringgody P&H Extraction ation late the collector. Screw the cop (without filter) as tightly and make ours that the hor pay is secured.

RaPID Assays

Carcinogenic PAHs in Soil

Intended Use

For detection of Corcinogenic Polynocians Assentia: Hydecarbons (cPAHs) in coil.

Materials Required but Not Provided

RePIO PropTM Soil Collection Kit and Corcinogenic PAHa Sample Extraction Kit.

Procedurel Notes and Precautions

Prepare sail samples for asslysis accuraing to the procedure given in the Carcinopesic PAHs Sample Extraction Kir, then, fellow the insurencessay procedure as described in the Carcinogenic PAHs Ref*ID Assuy® Kir package intent.

As with all immunoassays, a consistent inclusions in the bay to optimal perference. To obtain the greatest pracision, be sure to treat each tobe in an identical manner.

Add respects directly to the bettem of the tube while <u>reciding</u> context but ween the respects and the pipet tip. This will help essure consistent quantities of respect to the lest mixture.

Availd cross-contentinations and corryover of respents by using clean piputs for each sample addition end by avoiding contact between respent droplets on the tubes and pipet tips.

• Quality Control

A control solution at approximately 2.0 ppb of Carcinogenic PAH (as hance(a)pyrane) in provided with the Carcinogenic PAHs RaPtD Assay kit. It is recommended that it be included in a very run and treated in the same manner as unknown ramples. Once the control mouths are corrected for the district factors (as Rasulta section) as microphole result should be 100 times the value at and on the viel; in. 250 ± 40 ppb.

· Results

Multiply the sample and control results by the appropriate effection factor introduced by the collection, extraction and extract dilution steps. When the collection/electrocion/dilution procedure described in the Carcinopanic PARS Sample Extraction Kit is performed with a tay gram and comple, the RePID Assay result is multiplied by 100 to determine the soil Carcinopanic PAR concentration. Alternatively, program the RPA-1 Analyzer as death of the soil carcinopanic PAR.

Using the RPA-I^{+M} RePD Analyzer, calibration curves can be automatically calculated and stored. Refer to the RPA-I operating massed for detailed instructions. To obtain results from the Constingenic PAHs RePO Assay on the RPA-I the following parameter rettings are recommended:

Data Reduct	-	Lin. Regressio
Xformation	:	Le/Logit B
Read Mede		Absorbance
Wavelength	:	450 mm
Unitz	2	PPB
# Age Bib	;	0
Collbrators:		

of Cale

& al Rops

Concentra	lione,	
#1:	0.00	PPE
42:	10.0	PP
£3:	1 0 0.0	FPE
14	500 .D	PPI

Range : 4-500 Correlation : 0,890 Rep. %CV : 10%

Expected Results

to a study with 23 field contuminated sell samples. The Cortinogenic PAHs RaPIO Assay was shown to necessite will against EPA Method 8270 (SCANS). Using a cutoff of 0.7 ppm for the immunostacy, less than 5% falso positives and no falso magatines were absorved when compared to a 1.0 ppm action limit for the estimates should be sufficiently as the estimate should be sufficiently as the estimate should be sufficiently as the estimates of the sufficient should be sufficiently as the estimates of the sufficient should be sufficiently as the sufficient should be sufficient

Performance Data

Range of Detection

The Carcinopunic FAHs RaPID Austry has a range of detection in soil of 10 pph to 500 pph of benzolalpyrene, when used in conjunction with the Carcinopunic PAHs Sample Extraction Kit.

Becoren

Commingenic PAH recoveries will very depending on soil type, cutestion mechanism, solvent and extraction apparatus used, begin of autraction period and levels of potentially interfering substraces in the wall.

Thirmen (13) soils of various types were fortified with Cartinogunic PAHs (Bunzelsbyrene) to final sail concentrations of 100 pph. All soils were than subjected to the above matracticolidation procedure. Average recovery of the added PAHs was 98%. Results ranged from 76 to 132%.

Procision

The overall coefficient of variation (%CV) for Gurcinogenic PAK ammesurement in soil spiked at 100 ppb using the RaPID Prop components and Carcinogenic PAKs RaPID Assay is less than 10%. This represents the encount of variability expected when a hornogenous six ample undergoes for replicate callections, a stractions and dilutions percenting for immensuracy results large a single run.

osuba cametais		
by weight	by volume	
10	10	
93.1	63.9	
5.8	9.6	
	by weight 10 83.1	

Comple College

Assistance

For entering or technical assistance contact: Obmicron Environmental Diagnostica Sales Department Newtown, Pentenjumia 18840 8800544-8881 * Fax(215)880-5213

Availability

Ohmicren

Carcinopenic PAHs RaPID Assay 30 Test Kii 100 Test Kii Garcinogenic PAHs Sampis Dikaeni Carcinogenic PAHs Proficiency Sampise RaPID Prep Seil Cellection Kit RaPID Prep Carcinopenic PAHs Sampis Extraction Kit

277700

Acceptance of the

RAPID PREP™ FLOWCHART: PAH'S SOIL EXTRACTION PROTOCOL

SAMPLING

Kit, collect soil by weight (10 g) or Using the Sor' Sample Collection volume as directed (see package Device from the Soil Collection Insert for discussion).

DILUTION SCHEME <u>4</u>a

Add 250 µL of filtered extract Cap and mix by by inverting to a vial of PAH's Extract For samples 200 ppb to Diluent (12.25 mL). 5 pg 3;

several times.

Factor = 100.

EXTRACTION

Extraction Solution to the Collection Device. Add 20 mL (entire contents) of PAH's Replace cap (without filter). Shake for 1 minute,

Let stand for 5 minutes.

DALUTION SCHEME 6

Add 250 µL of diluted extrar* Add 250 µL of filtered extract (from 1st dilution) to 2,25 mL 50 pp.m: (see Environmental to a vial of PAH's Extract of PAH's RaPtD Assay For samples 2 ppm to Diluent (12.25 mL). User's Guide Diluent.

ASSAY L)

Factor = 1,000. Mix shoroughly.

Analyze diluted extract as "sample" according to the PAH's RaPID Assay procedure (see reverse). Muttiply results of extracted soll samples by appropriate factor.

FIL TRATION

Remove luer cap and filter extract into Remove screw cap and attach Filter Cap. Attach plunger rod to device. Extract Collection Vial.

For Ordering or Technical Assistance Contact: Ohmicron Environmental Diagnostics, Inc.

800 544-8881 215 860-5115

FAX 215 860-5213

30 Tests 100 Tests A00127 A00160 RaPID Prep Soil Collection Kit RaPID Prep PAH's Sample Extraction Kit # A00157 Part # A00156

STANDARD OPERATING PROCEDURE

IN-SITU FIELD SCREENING OF METALS IN SOIL BY RADIOISOTOPE EXCITED X-RAY FLUORESCENCE SPECTROMETRY

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL
DIVISION OF AIR & WASTE MANAGEMENT
SITE INVESTIGATION & RESTORATION BRANCH
NOVEMBER, 1996

STANDARD OPERATING PROCEDURE

In-Situ Field Screening of Metals in Soil by Radioisotope Excited X-ray Fluorescence Spectrometry

I. Scope and Application

- This method discusses the application of the bench top Quanx for screening of metals in soil.
 The data generated on the Quanx allow rapid evaluation of the extent of contamination for
 the purpose of site characterization and remediation.
- The method will also address data integrity by discussing resolution, measurement precision, accuracy, and the need for occasional sample preparation for exceptionally moist or coarse soil.
- The elements quantitated in the main soil application on-board the analyzer are: Ca, Tl, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se Hg, Pb, Ag, Cd, Sb, Ba. Any element heavier than phosphorus can be substituted into this list.
- 4. For the Quanx, the method is applicable to bazardous waste site characterization and screening for the metals and detection limits listed in Appendix A. These detection limits are calculated from each element analyzed in a clean Silicate matrix for 200 second count time.
- 5. Refer to the Quanx manual for instrument hardware information, software menu schematic, instrument specifications, source and battery replacement, etc.
- 6. This procedure may involve hazardous materials, operations, and equipment. All of the safety concerns associated with the use of this method will not be addressed. The operator should refer to the Quanx manual and pertinent OSHA guidelines for proper equipment and soil handling procedures.

II. Method Summary

The principle of X-ray fluorescence analysis is based on atomic excitation. Elements in a soil sample are irradiated with a beam of X-rays. Inner-orbital electrons in the atom are photoejected and leave the atom in an excited state as a result of electron vacancy. Relaxation of the atom occurs when an outer orbital electron fills the vacancy and results in emission of X-rays possessing energy unique to each element in the sample.

2. For in situ soil measurements, the analyzer probe is simply placed directly on the soil surface. Each of the three radioactive sources are rotated into position irradiating the soil for an amount of time that has been determined to adequately measure the elements of interest in the soil. The mercuric iodide detector is simultaneously processing emitted characteristic X-rays from the elements in the soil. Intensities extracted from the individual X-ray spectra are applied to an iterative calculation using coefficients derived from fundamental parameters. The operator is presented with element concentrations in parts per million (ppm) with theoretical standard deviations.

III. Interferences

- 1. Moist conditions can cause soil to adhere to the probe face window. To avoid contamination of subsequent measurements, periodically check the window for macroscopic soil particles. In most cases a dry cloth can be used to wipe the probe face and window clean.
- 2. The coarseness (or particle size), moisture content, and degree of homogeneity of the soil can interfere with the accuracy and/or precision of a measurement. In the case of in-situ soil analyses, best results are obtained on reasonably dry, flat, compacted surfaces of fine-grained soils. Good results can be obtained at moisture contents up to about 25%, beyond this point the soil is wet mud and must be contained in a sample cup.
- 3. Overlapping element emission lines in the spectrum can be a source of interference in some cases. An example of this is the overlap of lead L-lines with arsenic K-lines. Samples with exceptionally high lead concentrations elevates the detection limit of arsenic in the soil.

IV. Apparatus and Materials

- 1. Quanx X-ray fluorescence spectrometer is equipped with three electrically coded detectors.
- 2. A trowel for smoothing and compacting soil
- 3. Soil jars or strong plastic bags for taking samples
- Drying dish for moist soil can be either glass, Teflon or disposable polypropylene
- 5. Vented microwave oven
- Grinding device for homogenizing dried soils. Mortar and pestle or tungsten carbide grinding vessels.
- Plastic sample cups 32 mm.

8. X-ray film - 6.3 um polypropylene X-ray window film.

V. Fundamental Parameters Instrument Calibration

As mentioned in the method summary, measured analyte intensities are used to calculate element concentrations using a fundamental parameters (FP) algorithm of the form:

Concentration =
$$R \times S \times (1 + SUM [A_N \times C_n])$$

where, R = the measured analyte X-ray intensity relative to the pure element intensity

S = a calculated sensitivity coefficient.

AN = the alpha coefficient describing the effect of matrix element "n" on the element being calculated

CN = the concentration of the matrix element "n"

The quantity $SUM[A_n \times C_n]$ is a summation of "n" element absorption-enhancement terms containing fundamental parameters determined alpha-coefficients for the purpose of iteratively composing element concentrations. The summation term allows the instrument to be sensitive to any matrix variations within the soil, therefore eliminating the need for site specific standards. The menu-driven software in the Quanx supports multiple XRF calibrations called "Applications." Each Application is a complete analysis configuration including elements to be measured, interfering elements in the sample, and a set of FP calibration coefficients. The pure element intensities, sensitivity and alpha coefficient are all installed during manufacturing so the instrument does not need calibration.

VI. Instrument Operation Check

- Energy calibration operations are available on the analyzer. Energy calibration is a menu
 prompted operation executed by the user that involves placing the safety cover on the probe
 and initiating the ENERGY CALIBRATION function. This energy calibration utilizes the
 lead X-rays generated while irradiating the lead-lined safety cover. The automatic energy
 calibration can be relied upon in cases where the instrument is being used daily. The safety
 cover energy calibration should be used after the instrument has been out of use for several
 days and the battery has been unplugged.
- 2. To document the instrument is operating within resolution and stability tolerances, the standard operational check should be run before each day of field work. This is done by placing the pure element iron provided with the instrument over the window and running a 50 second analysis for each source. This should only be run with the probe in the lab stand base using the sample safety cover. Once this is complete, proceed by viewing the raw relative intensities for iron, manganese and cobalt. A relative intensity greater than 0.950 for iron and

less than 0.006 for manganese and cobalt indicates that the system is working properly. Each day's relative intensities should be written down in a log book for reference and documentation.

VII. Data Quality Assurance and Control

- 1. If contamination of the probe window is suspected, a blank should be run to verify the system has been completely decontaminated. If a blank soil is not available, the Teflon plug provided with the instrument can be used for this operation. The lab stand base and sample safety cover with sample positioning ring should be used here to ensure safe operation. The same count times used for field work should be used acquiring blank data. Before running the blank, it is important to DISABLE THE DISPLAY THRESHOLDS to show not detected elements on the results screen and also SHOW STD DEVIATIONS for observation. After running the blank, observe the results for the elements of interest. The magnitude of the resulting ppm concentrations should be no greater than three times the standard deviation value above or below zero. The reported values of the elements of interest and their standard deviations should be logged into a notebook for reference.
- 2. Since there is no sample preparation error in the in-situ measurement, but only sample presentation error, duplicates will not be run. However, reproducibility (precision) of a measurement will be studied in Section VIII of this method.
- 3. A check sample should be run every 20 samples to document the stability and consistency of the analysis for the element(s) of interest. The check sample should ideally be a soil from the site that is near the action level and represents the particle size and degree of homogeneity of the unknowns. The check sample can be contained in an X-ray sample cup for running in the lab stand base and should be run with the same count time as the unknowns. These values should be logged into a notebook to alert any significant trend in the analytical measurement. An average, standard deviation and percent relative standard deviation (%RSD) should be calculated from each days results. The quality of the results of the check sample should be gauged by the guidelines provided in Section VIII on precision.

VIII. Procedure

<u>In-situ</u>

1. The in-situ measurement can be taken by simply placing a probe on a flat area of fine grained soil. Any rocks, vegetation or large objects should be cleared from the area to get best results. Also, the immediate area to be measured should be flattened using a trowel (or the bottom of a shoe works well). Note that it is important that the probe be positioned flat against the soil. As much as a sixteenth of an inch of airspace between the aperture window

and the soil can disturb a measurement. The area underneath the probe face should not be concave. A flat or slightly convex area provides best results. The analysis is initiated by pushing the trigger button on the probe. The purpose of the DNREC, Bench top is more accurate and precise.

Note: After an analysis, the instrument will display the results screen. From this screen, the results can be stored by pressing STORE to display the labeling screen. The AUTOSTORE option can be employed when all analyses are to be saved. This automatically displays the labeling screen after a measurement and will avoid accidentally not storing a measurement.

Sample preparation and bench top analysis

Note: Although the fundamental parameters software automatically corrects for any element matrix variations in the soil, factors that are not accounted for include soil heterogeneity, particle size and moisture content. These are the three factors that may require that a soil sample be taken and prepared before analysis. In those cases, the sample can be prepared with the following procedure and analyzed with the probe in the lab stand base.

- 1. Place approximately 5 grams of soil into a drying dish. Remove any large pieces of organic material, rocks or metal.
- 2. Dry the soil in a microwave on 100% power for 3-5 minutes or in an oven at approximately 100° C until dry. Dry overnight if needed.
- 3. Grind the soil with a properly decontaminated mortar and pestle or mechanical grinder until desired homogeneity is obtained.
- Put the soil into a sample cup, seal with 6.3 pm polypropylens X-ray film and analyze.

X. Error Analysis

There are two main contributions to the error of an in-situ X-ray fluorescence measurement: the error due to instrument error and that due to sample inhomogeneity.

Instrument error is presented to operators after each measurement to provide the standard deviation based on theoretical counting statistics. The value of one standard deviation, displayed with the results output, means that 68% of repeat measurements of a homogeneous sample will fail within this error. Two times the standard deviation gives 95% confidence, while 3x provides greater than 99% confidence. As discussed in Section VIII (Precision), error can be reduced by increasing the count time. However, the displayed standard deviation error does not include errors due to uneven distribution of contaminants within the soil.

The error due to soil inhomogeneity is usually the most significant and least predictable. Since the penetrating and escape depth of X-rays in soil is relatively small, inhomogeneous distribution of contaminants on the soil particles can degrade the accuracy and/or precision of a measurement. Exceptionally large particle size soil will contain airspace which represents sample inhomogeneity as it is presented to the probe aperture window. For these reasons, it is important that the degree of soil homogeneity be studied for the site by taking a few samples back to the laboratory, drying and grinding them, placing the soil in a sample cup, analyzing them on the instrument in the lab stand configuration, then comparing the results with the in-situ measurements. If the results vary consistently high or low, then sampling the site and drying and grinding each sample should be considered.

Possible errors from the in-situ measurement:

Possible errors from sample preparation method:

O2Tot O2inst. O2prep, where heterogeneity, particle size and moisture problems are virtually eliminated and replaced by a sample preparation term. However, with careful sample preparation the magnitude of those three terms can be determined.

X. Effect of Counting Time on Precision and Detection Limit

Precision

Determine the precision that can be expected by making repeat measurements of a sample at or near the action level or level of concern established at the site. This sample can be the same as the check sample described in the QA/QC section, so it will be run every 20 samples. The precision objective should be $\pm 20\%$ relative standard deviation (%RSD).

Since X-ray emission is an example of a random event, the precision of intensity measurements is theoretically predicted and translated to a ppm value. One standard deviation of the counts used in quantitating a measurement (peak) is represented as the square root of those counts. This is the value that is displayed as the error on the analyzer. Again, this is theoretically based on the counting statistics only and doesn't include any error due to sample inhomogeneity, moisture, contamination, etc.

$$SDEV = \sqrt{N_t} \times 100\% = \frac{100}{\sqrt{N_t}} \times 100\% = \frac{100}{\sqrt{N_t}}$$

where, $N_t =$ the number of counts in the peak

%RSD = the percent relative standard deviation

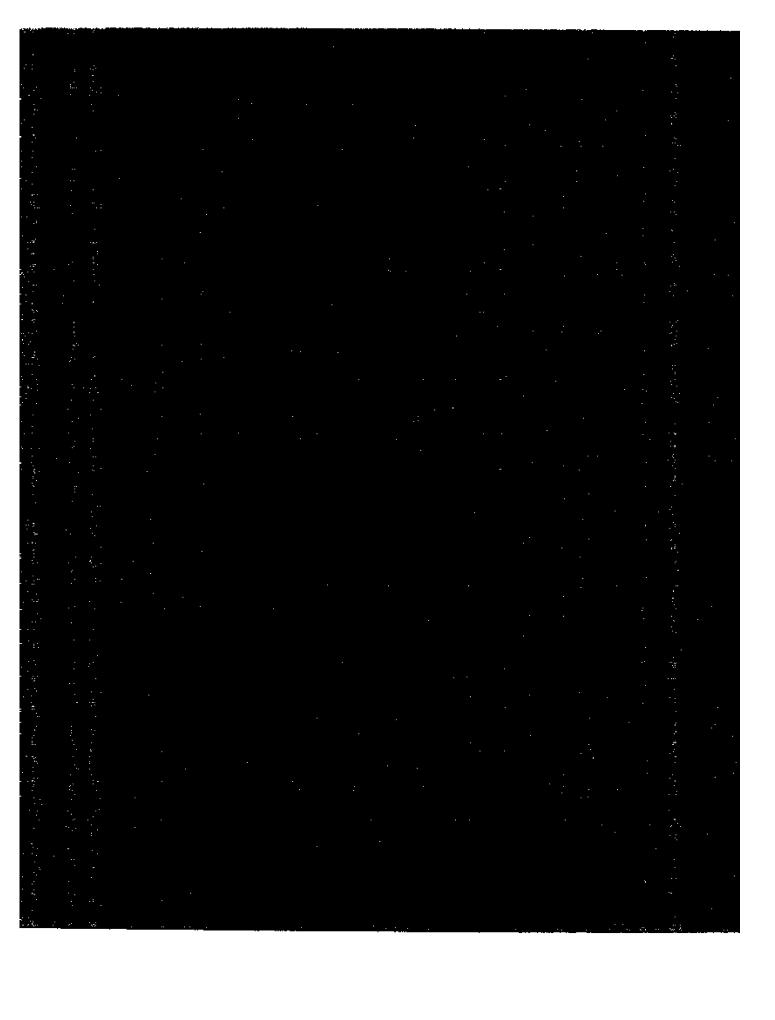
So, the precision or reproducibility of a measurement will get better with increasing count time. However, increasing the count time by a factor of 4 will get 2X better precision. So a point of diminishing returns is reached.

Example:	Count time	10 sec	Std Dev	<u>+</u> 50	ppm
		40 sec		<u>+</u> 25	ppm
		160 sec		<u>+</u> 12.5	ppm
			TRADE-OFF		

Lower Limit of Detection Calculation

As discussed in the section on precision, increasing the count time will decrease the uncertainty of a sample measurement. Decreasing the uncertainty also decreases the detection limit. The magnitude of this improvement is illustrated in the table below:

<u>Element</u>	Count time	<u>LLD</u>	Count Time	<u>LLD</u>
Chromium	200 sec	180 ppm	600 sec	103 ррт
Lead	200 sec	14 թթու	600 sec	8 թթա
<u>Arsenic</u>	<u>200 sec</u>	<u>25 ppm</u>	<u>600 sec</u>	<u>14 ppm</u>


The detectability of an element at a specific count time can be determined by evaluating the reported standard deviation. the validity of data near the LLD can be judged by analyzing a soil just above the detection limit. If the result is greater than 10 standard deviations the element is definitely present in the sample and can be accepted as a quantitative measure of it's concentration. A result below 3 standard deviations is, by definition, below the detection limit of the instrument. Results between 3 and 10 standard deviations fall into a gray area. If possible, increase the count time by a factor of four and rerun the sample.

Appendix A

Lower Limits of Detection for the Quanx [3 SD (BKG)]

	Element		MDL (ppm)
Ca		178	
T1		4.4	
Cr		17.4	
Mn		20.4	
Fe		8 2	
Co		313	
Ni		23.8	
Cu		8.6	
Zn		8.7	
As		2.7	
Se		3.0	
Нg		6.5	
Pb		2.7	
Cd		1.7	
Sb-		19.8	
Ва		11.7	

RMS:sth:dmg rms96055.doc

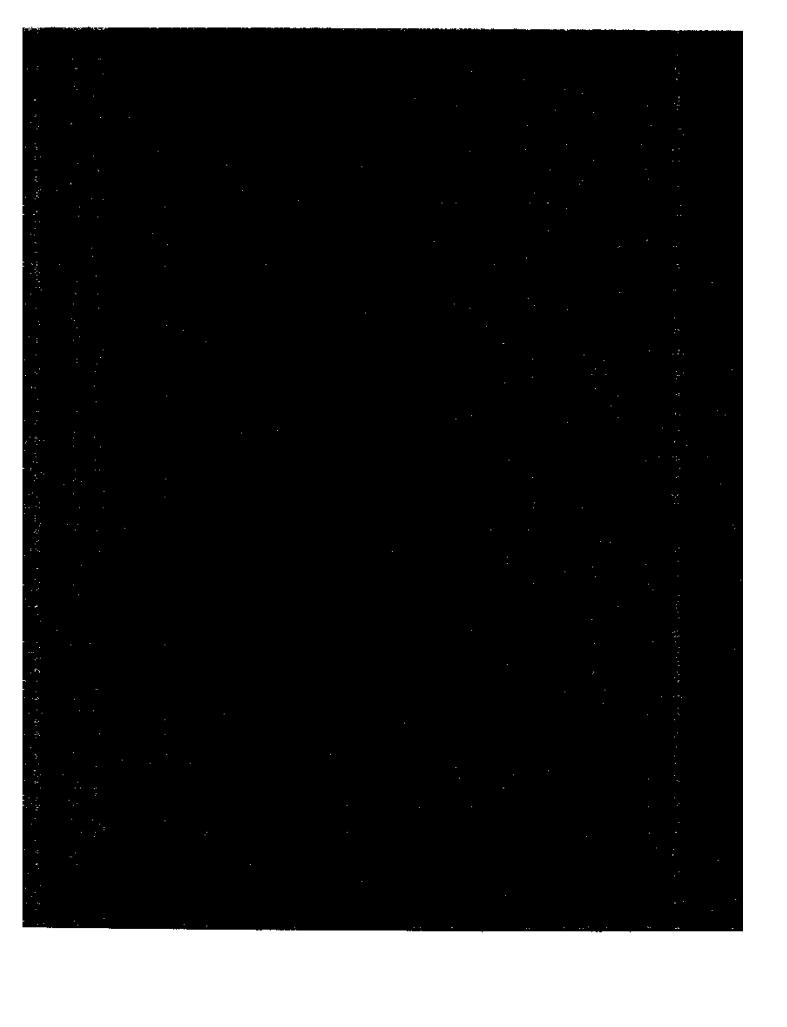
GEORGE GRAY ELEMENTARY SCHOOL BROWNFIELDS PRELIMINARY ASSESSMENT II

Test Fit Descriptions

TEST PIT	LOCATION	DESCRIPTION
GGTP-1	W. end of asphalt parking lot, 40° from building	0-12" 2" asphalt, mixed orange—brown clay w/ some sand & red clay, some small stones (round) & whole brick, some gray-green clay-sand, large quartz rock, (fill) 1-2" Orange & red clay w/ some orange & gray/white sand 2-3" Orange & some gray sand w/ some silt, damp 3-5" Same, some bright red clay 5-6" ked clay, stiff w/ some orange-gray clay & sand 6-7" Same, more gray clay 7-8" Red clay, some sand lenses 9-10" Red clay w/ orange/brown silty clay w/ some gray clay 11-12" Orange/brown silty clay (sapprolite)
GGTP-2	Center of S. asphalt parking lot	0-12" 2" asphalt, orange-brown sandy clay & silt, some red-gray clay, some stones, glass frags, metal & brick pieces (fill) 1-2" Lt. to drk. Brown clayey silt w/ gray clay w/ much bright orange silty clay (some sand) 2-4" Bright orange clayed silt w/ some sand 4-6" Same w/ some It. gray silt clay 6-7" Same, (@7" Red clay (stiff) 7-8" Red clay w/ some gray clay, variegated 8-9" Same, w/ white sand stringers 9-10" Same, w/ gray sand/sapprolite (@10")
GGTP-3	W. side of UST area, E. end of parking lot	0-12" 2" asphalt, crusher run stone & large rock (angular), drk. brown-gray clay fill 1-2' Dark brown-gray clay silt 2-3' Dark brown & gray silty clay 3-4' Lt. brown to orange sandy silt & clay 4-5' Lt. brown to orange suity clay, some sand 5-6' Dark brown to orange-red clay, some sand 5-6' Dark brown to orange-red clay, some sand 6-11' Same, orange-red 11-12' Same, to gray-white med, to coarse grained sand w/ remnant structures, fine grained black oxidized material, pink feldspar, moist

.

GEORGE GRAY ELEMENTARY SCHOOL BROWNFIELDS PRELIMINARY ASSESSMENT II


GGTP-4 GGTP-5 GGTP-6

CEORCII CRAY ELEMENTARY SCHOOL BROWNFIELDS PRELIMINARY ASSESSMENT II

	2007121220	2017117117
:	=	

		1651.11.16561191118
GGTP-8	W. side of grass field, along sidewalk, L. of 1954 section of building	0-12" Grass cover, II. brown soil w/ large concrete slabs, moved pit 6' closer to bidg 1-2' I.t. brown silt clay, a few rounded pebbles
	0	2.5' Same, minor brick pieces
		5-6' Same, more debris, brick, rock, some coal slag, ash, disturbed sapprolite,
		becauses), while the brown silty clay, more wet, sides of pit caying
		12-13' Dark gray clay, stiff
		13.14' Dark gray silt clay, w/ vegetation, animal bones, rounded stones
GGTP-9	NE corner of grass area	0-12" Grass over dark brown sandy soil 6", dark brown sandy soil w/ much brick,
		rock, glass, pottery shards, mortar, some ash, coal, slag, metal (fill)
		1.2' Same as above
		2-3' Same, much more brick & rock
		3-4' Same, damp soil, lots of brick & rock
	-	4-7' Orange & brown silt clay, ash @ 7'
		7-8' Gray incinerator ash, w/ much glass bottles, pottery, shoes, wood
		8.9' Ash, wetter
		9-10' Ash, wet, rust colored
		10-11' Ash, very wet, water @ 11'
		11-12' Aslı over dark gray clay, sticky, w/ thin black organic layer
;		12-13' Dark gray clay, sticky
GGTP-10	E. side of grass area, End of 22nd St., 50' W.	0.12" Grass cover, Lt. to dark brown top soil w/ some orange silty sand
	=	1-4' Dark brown sifty sand w/ large rock, brick, mortar, demo debris, very dry (fill)
	playground equip.)	4-5' Same, damp
		5-7' Dark brown silty clay w/ some sand, some black material, possibly charcoal
		7-8' Same, w/ minor ash, coal, slag
		8-11' Same, w/ more wood, ashlike material, dark gray clay (disturbed), oyster & clay
		shells, coal pieces, pottery & porcelain pieces
		11-12' Dark gray clay, medium stiff w/ some dark red clay
		12-16' Dark gray clay, medium stiff (marsh)
		16-17? Very dark gray to black clayey silt w/ peat, vegetation
GGTP-11	N. side of bldg., grass area, N. of sidewalk	0.12" Grass cover over It. to dark brown silly sand w/ small stones (fill)
	near E. door	1-2' It, to dark brown sifty clay to orange clay w/ nuch larger stone & round cobbles
		2.10' Sante, w/ brown silty sand
		10-11 Dark gray to black silty clay w/ small roots (marsh)
		11-13' Very sticky dark gray silly clay w/ small 1" rounded pebbles, wet, water $(0.12.5)$
		2

•

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF AIR & WASTE MANAGEMENT Site Investigation & Restoration Branch

MEMORANDUM

Date:

March 11, 1999

Subject:

George Gray School Soil Inorganic Data Validation

From:

Robert M. Schulte M 3/11/94

To:

Lawrence J. Jones

Project Officer

Through:

Karl F. Kalbacher KFF 3/11/59
Program Manager

Overview

The Sample Delivery Group (SDG) consisted of ten (10) soil samples, one rinse blank (SW-2), one trip blank (SW-1) and two field duplicate pairs (GGTP15 and GGTP4C, GGTP16 and GGTP9D). The Site Investigation and Restoration Branch (SIRB) of the Delaware Department of Natural Resources and Environmental Control (DNREC) collected the samples. Environmental Services Section of DNREC analyzed the samples according to the Standard Operating Procedures for Chemical Analytical Programs (SOPCAP) under the Hazardous Substance Cleanup Act (HSCA). The samples were analyzed for full TAL inorganics per the chain of custody.

Data Summary

All analytes were successfully analyzed for all samples.

Areas of concern are listed below according to the importance of the issue.

Major Issues

No major issues to report.

Minor Issues

The preparation blank (PB), continuing calibration blank (CCB), initial calibration blank (ICB) and rinse blank had reported results greater than the instrument detection limit (IDL) for the analytes given below. The reported results for these analytes in the affected samples that are less than five times (<5X) the blank concentration may be biased high and do not appear on the data summary forms as detectable valid results. Negative blank values in the blanks

may result in bias low result and all practical quantitation limits must be qualified with a "UJ" as estimated. The following analytes were detected in the blanks: Soil Blank- Aluminum 18.2 mg/Kg, Cadmium .062 mg/Kg, Iron 4.11 mg/Kg, Manganese -.020 mg/Kg, Magnesium 8.12 mg/Kg and Zinc .173 mg/Kg. TCLP Blank-Barium 1.52 ug/L, Cadmium -.251 ug/L, Chromium .689 ug/L, Iron 17.0 ug/L, Magnesium 53.8 ug/L and Mercury -.1 ug/L.

Notes

The laboratory control sample was within validation quality control limits. No qualification is necessary.

All analysis and preparation holding times were within validation quality control limits. No qualification is necessary.

The TAL matrix spike recoveries for Barium, Copper, and Antimony were outside validation quality control limits. All positive results and practical quantitation limits will be qualified "J" and "UJ" as estimated, respectively, on the data summary tables.

All interference check sample results were within validation quality control limits. No qualification is necessary.

The serial dilution results were within validation quality control limits. No qualification is necessary.

All instruments were calibrated daily. No qualification is necessary.

All quantitation and quantitation limits were checked against the raw data. No qualification is necessary.

All data were validated in accordance with the National Functional Guidelines for Evaluating Inorganic Analyses, With Modifications for Use within EPA Region III.

No method of standards addition was performed.

The CRDL standard results are within validation quality control limits. No qualification is necessary.

The instrument detection level study was conducted within validation quality control limits. No qualification is necessary.

TAL Mercury, TCLP Mercury and Zinc laboratory duplicate results were outside of validation quality control limits. All positive results and practical quantitation limits will be qualified "J" and "UJ" as estimated, respectively, on the data summary tables.

All analysis run times were consistent and within validation quality control

limits. No qualification is necessary.

The field duplicate comparison results are as follows:

Concentration mg/Kg

Compound	GGTP-9D	GGTP16D	%RPD
Aluminum	12700	Ī1900	7
Arsenic	18.0	40.8	78*
Calcium	3610	4680	26
Chromium	31.3	56.1	57*
Copper	94.9	343	78*
Iron	44500	80800	58*
Manganese	607	735	19
Mercury	0.79	0.46	53*
Nickel	35.8	104	98*
Selenium	2.9	4.2	37*
Vanadium	41.5	41.3	<1
Zinc	889	1510	52*
Barium	216	194	11
Lead	546	632	15
	GGTP4C	GGTP15	
Aluminum	8630	7780	10
Barium	413	529	25
Calcium	5250	4850	26
Chromium	21.1	21.6	2
Copper	128	124	3
Iron	12300	20700	51*
Lead	709	1450	69*
Mercury	0.46	0.62	30
Nickel	21.0	26.2	23
Selenium	3.2	4.1	25
Vanadium	34.4	39.3	14
Zinc	863	1010	16
Manganese	191	228	18
Arsenic	10.2	12.3	19

^{*} Outside of validation quality control limits

Most field duplicate results are outside validation quality control limits. All positive results and practical quantitation limits will be qualified "J" and "UJ" as estimated, respectively, on the data summary tables .

Attachments:

Data Summary Forms Results Reported by Laboratory Form IS Chain of Custody Support Documentation

RMS:slb RMS99019.doc DE-1138 II A 3

FIELD CHAIN OF CUSTODY

Client: 49 Kings Hwy., P.O. Har 1401, Down Dis 1990.1 (102) 739-4771 Emironmental Services Section – Livisium of Water Resources Department of Natural Resources and Environmental Control

MONECT NAME GEORGE GRAY ELEM, SCHOOL

391 LUKENS DEVE DNREC-5/RB MENCASTIE, DE (302) 395-3600 Address: Phone

ROBOLT SCHULTE ROBERT SCAULTE Report To: Invoice To:

ESS No.: Account:

19720

0,000

ANALYSES ETTE WEINTS ŀ Ì 917

> 5 Å Sinory

Sample Sample Matrix Comp Grab

Citizat Sample Description

Lab Log No. ISS only

٠.

C

0111 1205

1/6

Š

18055900 667P-35 8055910 6678-45 98055920 667P = 4 c

6157 P- 2d

28055890

Š

<u>مرز</u>

1/41 1101

ź

Yawa. Howlinks

SAMPLEUS FREEZE OUNT HOLLIN

ŧ

Ç V

1700

7/2/

Š

ŝ

142.5

///

98055930 6677-5 5 4 WM 805594016077P-1054 65

5.0

S

12/2 [125] <u>ر</u> ج

o Vi

0735

7

, (1)

35

/7/

7

16678-15

\$025970 6678-10A

8055950 667P-9

REMARKS ...

I'W - poubbe water SW - surface water GW - ground water WW - waste water DL - dram thaulds DS - drum solids SW - solid waste X - other (Please ST - Stutumenter Al - air Hi - biological SE - sediment SL - sludge SD - solid OI - oil SO - soil Service RECEIVED BY: (rigidature) Services

Matrix Codes

Skin-irritant [7] Other [1]

Flanmable 四/ Toxic 以

Potential Bazard Identification: Non-Hazard 11

Disposal by ESS D4 Authorized by:

ι

Letter

A SOCIED MILL

SCOOL DATE:

Sample Disposal: Return to Client [1]

5

86/1/21

0935

86-2-71

C3W/3W

TI - lissue VI - wipe JOCO HURA

specify

S. Liohling investigation 6. Boules supplied by LISS 5 7. Fight Pillered Yes. Yes. No. Yes. No. 1. Received brokendlesking 4. Prupedy preserved ... Yes No.

Control Distribundes between sample, labels and COC record?

Company Chibroten on sample

Yes (No.) West No.

1. Shipped or Hand-delivered 2. Childred or Ambleut 3. Received by Huter. (255 p. 4-4-6). The L. A. Costody Seal. Was:

Sample Condition: ESS USE ONLY

COMMENTS:

マーションの100mm 140mm 140m

950216.KAK

White - Original Yellow - ESS Copy Pink - Client Copy

FIELD CHAIN OF CUSTODY

Page 2 of 2

Environmental Services Section — Division of Water Resources Department of Nicheral Resources and Restonantal Control 89 Einge stay, P.O. Bar 1481, Dover DB 19903 (192) 739-4771

13	冥	1
	4	υĝ
[]-	٩	
	۲,	}} {
	7	Vs/
1.05		~ ~

19720 NOV COURT DE DNRSC LSFS 391 CURENS DR (5.3) 202-20S Clent Address: Phone:

ROSCAT SCANCTE Swill ROBERT Report To: Invoice To: Account: ESS No.:

			TEMPORAL STATES OF THE STATES									· Matrix Codes	Al - gir WW - waste water Bl - biological PW - potable water		St studge Dt drum liquids	S.D colk D.S ciuin sottus Ot - oil S.W colki weste		WI - wipo A - uiner (Piezze ipecify)	
	4	יטראי מראי	Ç¥⁄ ŋ,		í l	-	· X					uher 11		지 RECEIVED BY: (signature) 문항이 구현		8 10	O M. DEGOSSES		
	1	5.5 2.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	7+N3 7+N3 00/1	<u>₹</u> i	<u> </u>	- X %	∞XXX					Flanunable M. Toxic (K. Skin-irrigan d.). Other 1	SHAPP.	RICEIV		,	177) / (M	>	
			Sample Matrix* Comp. Grab. C) 2 2	X	X S	<u>3</u>					Dr. Tuxic (Dr.	Authorized by:	TIME	03/		0935	<u>:</u>	
School	3		Sample Sample	12/2 1215	12/2 MYS	1,2 cs(c) 1/11	142 1515						Disposal by ESS 4. Authorized by:	A SATE	143/53		36-2-21		
	1000	The Table	Cilent Sample Description	CCTP-16A		66 Sin-1	4. 35.99	_	_			Potential Hazard Identification: Non-Hazard 19	Sample Disposal: Return to Client [] Dis	See 11 RELEGISTED BY: tolgrammes & See 500	×4/00				
Incode I posses	Š	SAMILLERS (Sugares)	LSS only	CS155097		010-5086	C- M5 93 (2009) SUSB				*	Potential Hazar	Sample Disposa	SAFTIBINE CONTRACT	100			COMMENTS:	i

3. Received brokentkaking Yes (No 2 Unbioken on outer medange 1. Shipped or Hand-delivered 2. Chillied or Anablem.
Notes: \$55.2.0K-?
Custody Seal Walt 1. Pretein on outer puckage. Sangle Condidors ESS USE ONLY

ng 4. Property preserved

Tesetti on sample Yea (No. 1)

(1997年) 1997年 | 1997 y preserved 5. Holding Garpersgrived No. No.

6. Boiltes surpollottes 255 7. Fleid Filtered

Yes No ON TO SELECTION OF THE PROPERTY OF THE PROPERT 5. Discrepanisis, belycen sample labels and COC record?

White - Original Yellow - BSS Cupy Pink - Client Cepty

950216.KAK

Į.

Site Name: G_{cogc} G_{cay} $G_{hoo}/S_{ampling Date(s): /2//.2/98}$

DATA SUMMARY YORM: INORGANICS

So 7.

(Media) SAMPLES

(Units) "3/4

Sample Number)			4(3.5)
Sample Location	66 TP 4C	66 7915	0911299	667799	G6191S	GB TP2D	769
Analyle							
Aluminum	6630	7780	11,900	12700	04.68	87.50	
Antimony							
Arsenic	10.2	12.3	40.8	18.0	8.5		
Banum	4.3	529	194	216	734	76.1	
Beryllium							
Cadmium							
Calcium	5250	4850	4680	3610	2118	3080	
Chromium	77.7	21.6	56.1	313	194	15.81	
Cobalt			≥ 36.0			16.0	
Copper	128	124	343	24.9	121		
Iron	12,300	20 700	80800	205/4	17.102	36,400	
Lead	709	1.450	632	546	15/0	21/	3/
Magnesium						1670	
Manganese	161	228	735	407	210	439	
Mercury	0.46	0.62	0.46	0.79	6.39		
Nickel	21.0	26.2	104	35.8	2/2	26.2	
Potassium	1640						
Selenium	3.2	11/	4.2	4.9	17		
Silver	•		:				
Sodium							5260
Thallium							
Vanadium	344	39.5	41.3	41.5	43.0	36.2	
Zinc	863	10/0	1510.	888	34/	18.7	
Cyanide		0.76		-			

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM (

GGTP4c

Lab Code: DE023

Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL

Lab Sample ID: 98055920

Level (low/med): LOW

Date Received: 12/04/98

% Solids:

69.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

ł	1					
CAS No.	Analyte	Concentration	¢	Q	М	; !
7429-90-5	Aluminum	8630	-	ļ	P	•
<u>7440-36-0</u>	Antimony	0.95	Ū	N	P	į
7440-38-2	Arsenic	10.2	i —	·	P	į
<u>7440-39-3</u>	Barium	413	i –	N	P	į
7440-41-7	Bervllium	0.78	₿		P	:
<u>744</u> 0-43-9	Cadmium	0.25	В		P	•
<u>7440-70-2</u>	Calcium	5250	<u> </u>	į	<u>P</u>	
7440-47-3	Chromium	21.1	_	<u> </u>	P	ĺ
7440-48-4	Cobalt	8.4	В	į —	P	:
7440-50-8	Copper	128	i –	N	P	•
7439-89-6	Iron	12300	_		P	:
7439-92-1	Lead	709	-		P	į
7439-95-4	Magnesium	683	В	'	P	
7439-96-5	Manganese	191	-	<u>'</u>	P	•
7439-97-6	Mercury	0.46	_	*	CV	į.
7440-02-0	Nickel	21.0	_		P	į
7440-09-7	Potassium	1640			<u>P_</u>	•
7782-49-2	Selenium	3.2	[-		P	į
7440-22-4	Silver	0.43	Ū	[P	į
7440-23-5	Sodium	727	B		P	į
7440-28-0	Thallium	1.1	ប៊្	· · · · · · · · · · · · · · · · · · ·	È	į
7440-62-2	Vanadium	34.4	-		P	
7440-66-6	Zinc	863	_	*	P	í
l	Cyanide	7	Ü	h	ic	m

Color Before: GREY

Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR Artifacts:

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GGTP15

Lab Code: DE023 Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL Level (low/med): LOW

Lab Sample ID: 98055980

Date Received: 12/04/98

% Solids:

66.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		·· ·	_		
CAS No.	Analyte	Concentration	c	Q	M
7429-90-5	Aluminum	7780	!	!	P
<u>7440-36-0</u>	Antimony	0.99	Ū	<u>N</u>	P
7440-38-2	Arsenic	12.3	Ť		P
7440-39-3	Barium	529	-	N	P
7440-41-7	Beryllium	0.73	B		P
<u>7440-43-9</u>	Cadmium	0.22	B		P
<u>7440-70-2</u>	<u>Calcium</u>	4850	-		$\{\overline{\mathbf{p}}^{-}\}$
<u>7440-47-3</u>	<u>Chromium</u>	21.6	-		P
<u>7440-48-4</u>	Cobalt	8_7	В		P
7440-50-8	Copper	124		N	P
<u>7439-89-6</u>	<u>Iron</u>	20700	_		P
<u>7439-92-1</u>	Lead	1450			P
<u>7439-95-4</u>	<u>Magnesium</u>	645	В		P
7439-96-5	<u>Manganese</u>	228	ΙΞΙ		P
7439-97-6	Mercury	0.62	1	*	(cv
<u>7440-02-0</u>	Nickel	<u></u>			P.
7440-09-7	<u>Potassium</u>	1420	В		P
7782-49-2	<u>Selenium</u>	4.1			P
7440-22-4	Silver	0.45	Ų;		P
7440-23-5	<u>Sodium</u>	568_	<u>B</u> ;		P (
7440-28-0	Thallium :	1.1	U		P
7440-62-2	<u>Vanadium</u>	39.3	1		$\frac{1}{P}$
7440-66-6	Zinc	<u>1010</u>	_ ;	*	P
i	<u>Cyanide</u>	<u>0.76 3.0</u>	U 1		¦ <u>c</u> ¦

_1C | 7mm 12/30/98

Color Before: GREY Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR Artifacts:

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GTP16d

Lab Code: DE023 Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL Level (low/med): Low

Lab Sample ID: 98055990

Date Received: 12/04/98

% Solids:

51.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	CAS No.	Analyte	Concentration	С	Q	i H	! ! !
ł	<u>7429-90-5</u>	Aluminum	11900	-		P	į
- ;	7440-36-0	Antimony		<u>U</u>	N	P	į
- 1	7440-38-2	Arsenic	40.8	_		P	į
- !	<u>7440-39-3</u>	Barium	194		N	P	•
i	<u>7440-41-7</u>	Beryllium	0.64	B	-	ÌΡ	Ė
+	7440-43-9	Cadmium	0.67	В		E	
H	7440-70-2	Calcium	4680	=		P	į
H	7440-47-3	Chromium	<u>56.</u> 1			P	į
- }	<u>7440-48-4</u> :	Cobalt	36.0			P	ì
ŀ	<u>7440-50-8</u> :	Copper	343		N	P	•
ŀ	<u>7439-89-6</u>	Iron	80800			P	ţ
i	<u>7439-92-1</u>	Lead	632	_		P	<u> </u>
i	<u>7439-95-4</u>	<u>Magnesium</u>	1220	В		P	:
i	<u>7439-96-5</u>	<u>Manganese</u>	735	_		P	
- (,	<u>7439-97-6</u> ¦	<u>Mercury</u>	0.46	_	*	CV	r
Ţ	<u>7440-02-0 </u> ¦	Nickel :	104	_		P	
ij.	<u>7440-09-7 </u>	Potassium_	967	₿		P	į
3	<u>7782-49-2 </u>	<u>Selenium</u>	4.2	_		E	į
ij	<u>7440-22-4 </u>	<u>Silver</u>		Ū		Ē.	!
ł	<u>7440-23-5</u> ¦	Sodium	437	В		P	į
ij,	<u>7440-28-0</u> (<u>Thallium</u>	1.5	Ū:		P	į
ŀ,	<u>7440-62-2</u> ¦	<u>Vanadium</u>	41.3			P	ĺ
ı,	<u>7440-66-6</u> ;	Zinc	1510	_	*	P	Ì
ł	- -	Cyanide	097 3.9	₫:			mup 12/30/98

Color Before: BLACK Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR Artifacts:

Comments:

FORM I - IN

ENVIROFORMS/INORGANIC CLP

1

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GGTP9d

Lab Code: DE023

Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL

Lab Sample ID: 98055960

Level (low/med): Low

Date Received: 12/04/98

% Solids:

54.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	'		-			
CAS No.	Analyte	Concentration	C	Q	М	<u> </u>
7429-90-5	Aluminum	12700	!-	¦	P	!
<u>7440-36-0</u>	Antimony		<u> </u>	N	P	į
7440-38-2	Arsenic	18.0	-	·	P	(
<u>7440-39-3</u>	Barium	216	ì – i	N	P	į
7440-41-7	Beryllium	0.69	В		P	<u>í</u>
<u>7440-43-9</u>	Cadmium	1.2	В		P	ì
<u>7440-70-2</u>	Calcium	3610	_		ÌΡ	ĺ
<u>7440-47-3</u>	Chromium	31.3	_		P	1
<u>7440-48-4</u>	Cobalt	13.4	В	· · · · · · · · · · · · · · · · · · ·	P	į
7440-50-8	Copper	94.9	: :	N	Ē	į
<u>7439-89-6</u>	Iron	44500	i – i		P	į
7439-92-1	Lead	546	_		P	į
<u>7439-95-4</u>	Magnesium		В		È	
<u>7439-96-5</u>	Manganese	607	<u> </u>		P	į
<u>7439-97-6</u>	Mercury	0.79	_	*	CV	Ī
<u>7440-02-0</u>	Nickel	35.8	i – i		₽	
<u>7440-09-7</u>	Potassium	731	В		i P	į
7782-49-2	Selenium	2.9			P	ì
7440-22-4	Silver	0.56	ΰ	·	P	Í
7440-23-5	Sodium	177	B		P	}
7440-28-0	Thallium	1.4	Ū		P	ì
7440-62-2	<u>Vanadium</u>	41.5	-		P_	<u> </u>
7440-66-6	Zinc	889	- 1	*	ĒΤ	
	Cyanide	- A O A	Ū		Ċ	mr 12
			1			

Color Before: BLACK

Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Artifacts:

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GGTP4s

Lab Code: DE023 Case No.: SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL

Lab Sample ID: 98055910

Level (low/med): Low

Date Received: 12/04/98

% Solids:

71.1

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		·	_			
CAS No.	Analyte	Concentration	C	Q	М	!
7429-90-5	Aluminum	8840	-	! — —	P	i !
7440-36-0	Antimony		<u>u</u> :	N	Į̈́P	į
7440-38-2	Arsenic	8.5	=	· · · · · · · · · · · · · · · · · · ·	ΪP	•
7440-39-3	Barium	334	-	N	P	į
7440-41-7	Beryllium		В	· -	Ē	į
7440-43-9	Cadmium	0.03	Ū		P	1
7440-70-2	Calcium	8100	. -		È	Í
7440-47-3	Chromium	29.2	-		P	ļ
7440-48-4	Cobalt		В		P	į
7440-50-8	Соррег	121	_	N	P	į
7439-89-6	Iron	17100	-		P	į
7439-92-1	Lead	1510	-		P	
7439-95-4	Magnesium	. · · · · · · · · · · · · · · · · · · ·	B		P	
7439-96-5	Manganese	210			į	
7439-97-6	Mercury	0.39	-	*	ĈΫ	•
7440-02-0	Nickel	21.7	-		P	
<u>7440-09-7</u>	<u>Potassium</u>	1090	В		P	Í
<u>7782-49-2</u>	<u>Selenium</u>	2.1	_		₽	}
<u>7440-22-4</u>	Şilver	0.42	Ū		P	ĺ
<u>7440-23-5</u>	Sodium	301	В		P	i
7440-28-0	Thallium	1.1	Ū		P	i
<u>7440-62-2</u>	<u>Vanadium</u>	43.0	-		P	į
<u>7440-66-6</u>	Zinc	341	_	*	P	ĺ
1	Cyanide	0.70 2.8	ΰ			mno 121.

Color Before: GREY

Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR Artifacts:

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GGTP2d

Lab Code: DE023 Case No.: SAS No.:

SDG No.: #06960

Matrix (soil/water): SOIL

Lab Sample ID: 98055890

Level (low/med): Low

Date Received: 12/04/98

% Solids:

83.3

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		<u> </u>	-			
CAS No.	Analyte	Concentration	c	Q	M	į
7429-90-5	Aluminum	8750	<u> </u> -	<u> </u>	P	Ţ
7440-36-0	Antimony		(₽	N	¦ <u>=</u>	:
<u>7440-38-2</u>	Arsenic	· · · · · · · · · · · · · · · · · · ·	Ü		P	į
<u>7440-39-3</u>	<u>Barium</u>	76.1	i	N	P	i
<u>7440-41-7</u>	Beryllium_	0.54	¦Β	i	P	į
<u>7440-43-9</u>	<u>Cadmium</u>	0.02	<u>U</u>	i	P	ĺ
<u>7440-70-2</u>	<u>Calcium</u>	3080	i _	l	¦P_	1
7440-47-3	<u>Chromium</u>	15.8	<u> </u>	¦	IP_	:
7440-48-4	Cobalt	16.0_	ا ــ ا	¦	<u> </u>	1
7440-50-8	Copper		<u>B</u>	N	¦ P	i
7439-89-6	Iron	36400	_		<u> </u>	;
7439-92-1	Lead	2.1	_ :		IP_	ł
7439-95-4	<u>Magnesium</u>	<u> </u>	<u> </u>		<u>P_</u>	1
7439-96-5	<u>Manganese</u>	<u>439</u>	_		; <u>P</u> _	ł
7439-97-6	Mercury		П	*	CV	!
7440-02-0	<u>Nickel</u>	26.2			<u>P</u>	ļ
7440-09-7	Potassium	<u>158_</u>	ū		<u>P_</u>	į.
7782-49-2	<u>Selenium</u>		ū		‡₽	
7440-22-4	Silver		므		<u> P</u>	Į
7440-23-5	Sodium	33.7	П		<u>P_</u>	1
7440-28-0 7440-62-2	Thallium		Ω		<u>P</u> _	į
	Vanadium _	36.2	- !		<u>P</u>	•
7440- <u>66-6</u>	Zinc	18.7	_;	*	<u> </u>	Ĺ
	<u>Cyanide</u>	0.60 2.4	Ų;		¦ <u>C</u> _	בו כמודו

Color Before: BROWN

Clarity Before: OPAQUE Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR Artifacts:

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

GGSW-2

Lab Code: DE023

Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): WATER

Lab Sample ID: 98056020

Level (low/med): LOW

Date Received: 12/07/98

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	1	i			:	
1	CAS No.	Analyte	Concentration	c	Q	М
	7429-90-5	Aluminum	15.5	ยี	: 	P
- 1	7440-36-0	Antimony	3.3	Ū	[ΉP
	7440-38-2	Arsenic	4.0	Ū	! ————	P
	7440-39-3	Barium	0.43	B	[P
-	7440-41-7	Beryllium	0.10	ιō.	!	P
	7440-43-9	Cadmium	0.10	Ū	<u> </u>	P
	7440-70-2	Calcium	115	ΰ	[-	P
	7440 - 47 - 3	Chromium	6.4	₫.	<u> </u>	P
	7440-48-4	Cobalt	0.60	Ū		p
	<u>744</u> 0-50-8	Copper	3.3	В		P
	7439-89-6	Iron	43.7	В		P
	7439-92-1	Lead	3.1			P
1	7439-95-4	Magnesium	16.9	В		P
	7439-96-5	Manganese	1.1	В		P
- 1	7439-97-6	Mercury	0.10	Ų	*	CV
	<u>7440-02-0</u>	<u>Nickel</u>	6.7	B		P
ŀ	<u>7440-09-7</u>	Potassium	660	Ū		P
1	7782-49-2	Selenium	4.0	ט		P
	7440-22-4	Silver	1.5	Q		P
	<u>7440-23-5</u>	<u>Sodium</u>	5260	_		P
i	7440-28-0	Thallium '	3.8	Ū		P
- 1	<u>7440-62-2</u>	Vanadium :	0.60	U		P
i	7440-66-6	Zinc	4.3	В		P
1		Cyanide	10.0	Ū		c

Color Before: COLORLESS Clarity Before: CLEAR Texture:

Color After: COLORLESS Clarity After: CLEAR

Artifacts:

Stia Name: George Gray Sampling Date(8): 121, 2/99

DATA SUMMARY FORM: INORGANICS

77C+P So, 4
(Media) SAMPLES
(Units) mg/4

				-				L	ſ
Sample Namber									
Sample Location	CLT TO HE	Qb 179D	<u> </u>						
Analyte									
Aluminam				-					
Antimony									
Arsenic	7620	7540'							
Barium	€ 35.	4011							
Beryllium								_	
Cadmium									
Calcium	-								
Chromium									
Cobalt									
Copper									
tron									
Lead	1.59	307			-				
Magnesium									
Manganese							·		
Mercury						_			
Nickel									
Potassium									
Selenium	£00'	1600'							
Silver									
Sodium									
Thallium									
Vanadium									
Zinc									
Cyanide									

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

4cGGTP

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

Lab Code: DE023

Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): WATER

Lab Sample ID: 98055920

Level (low/med):

Date Received: 12/07/98

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	 Concentration 	¦c	Q	м
7429-90-5	Aluminum		B	¦	-:-:
<u>7440-36-0</u>	Antimony	1	<u>`</u>	; 	— <u>(</u> —
<u>7440-38-2</u>	Arsenic	29.6	i-	<u>i</u> —	_ P
<u>7440-39-3</u>	Barium	567	i-	<u> </u>	P
<u>7440-41-7</u>	Beryllium		i –	i	
7440-43-9	Cadmium	3.9	B	i ——	_ <u> _ </u>
7440-70-2	Calcium	1	i =	<u>;</u> ——	—(<i>*</i> —
7440-47-3	Chromium	1.1	Ē	<u>i</u> — —	T P
7440-48-4	Cobalt	<u> </u>	įĒ	i — —	-;-;
7440-50-8	Copper	· · · · · · · · · · · · · · · · · · ·	į-	i	—;—;
17439-89-6	Iron	i ———	B	:	— <u>;</u> —;
7439-92-1	Lead	1590	: -	i ——	P
7439-95-4	Magnesium	I	В	<u>; — </u>	<u> </u>
7439-96-5	Manganese		!=	<u> </u>	-;-;
7439-97-6	Mercury	0.10	Ü	*	_¦cv¦
7440-02-0	Nickel		<u> </u>	<u> </u>	; ;
7440-09-7	Potassium		<u>i —</u> ,	¦	-:-:
7782-49-2	Selenium	7.0	: – ,	N	-¦-;
7440-22-4	Silver		Ū.		T P
7440-23-5	Sodium	[ᅩ		━¦⁵─¦
7440-28-0	Thallium	<u></u>	_		— <u>;</u> —;
7440-62-2	Vanadium		-	!	-¦-¦
7440-66-6	Zinc		- 1		-:-:
	Cyanide		!-:	!	-::
· — — —	1	1	ı ı	I	''

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

TCLP EXTRACT

ENVIROFORMS/INORGANIC CLP

SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: DE DNREC:DIV OF WATER RES

Contract: DNREC:DAWM

9dGGTP

Lab Code: DE023

Case No.:

SAS No.:

SDG No.: #06960

Matrix (soil/water): WATER

Lab Sample ID: 98055960

Level (low/med):

LOW

Date Received: 12/07/98

% Solids:

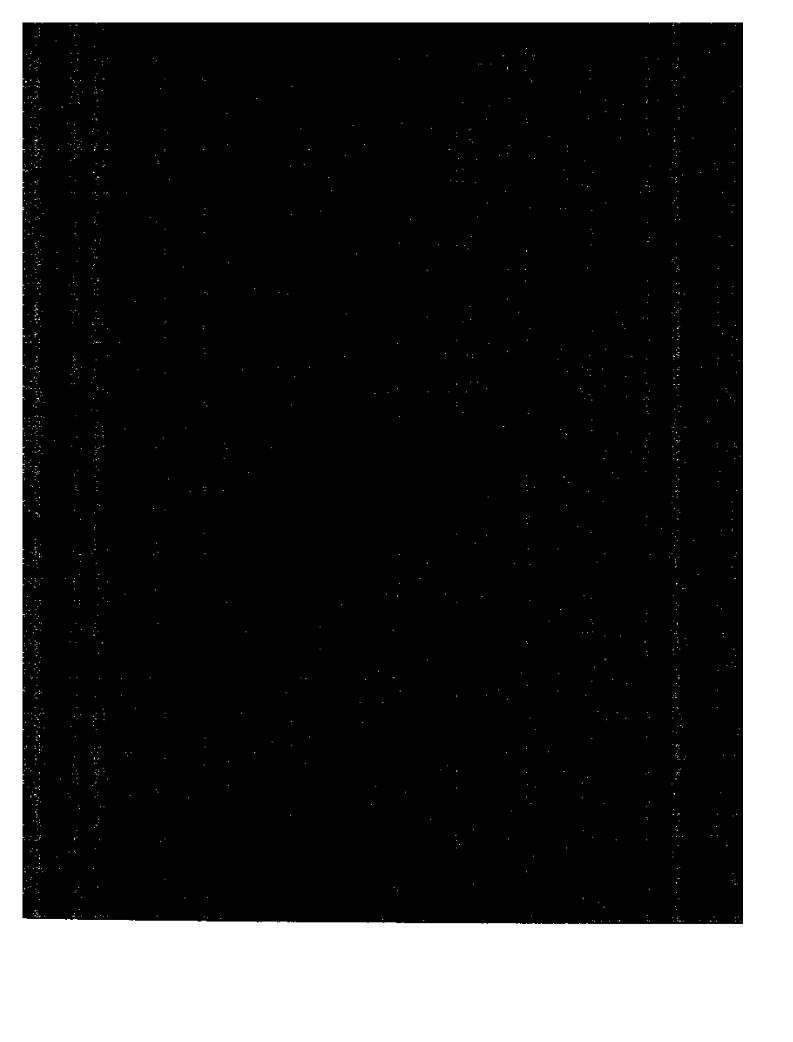
Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	М
7429-90-5	Aluminum	<u> </u>	<u> </u> -	<u> </u>	~¦− ¦
<u>7440-36-0</u>	Antimony		i-	i — —	—;—;
7440-38-2	Arsenic	45.2	<u>; – </u>	[P
<u>7440-39-3</u>	Barium	1040	i-	·	_ <u>-</u>
7440-41-7	Beryllium:		[-	i — —	 ;;
7440-43-9	Cadmium	0.10	Ū		P
7440-70-2	Calcium	I	; =	: 	
<u>7440-47-3</u>	Chromium	1.4	B		— P
7440-48-4	Cobalt] -		-¦¦
7440-50-8	Copper		-		—¦;
7439-89-6	Iron	<u> </u>	-		-¦-¦
7439-92-1	Lead	3070	-		- -
7439-95-4	Magnesium	i	В		¦¦
7439-96-5	Manganese		=		— <u>}</u> —
7439-97-6	Mercury	0.10	ប	*	_¦ <u>cv</u> ¦
<u>7440-02-0</u>	<u>Ni</u> ckei		-		;
7440-09-7	Potassium		_		::
7782-49-2	Selenium	9.1	_		$- _{\overline{\mathbf{P}}} $
7440-22-4	Silver	2.0	В		—; <u> </u>
7440-23-5	Sodium		-		╼╌┊╧┷╌┆
7440-28-0	Thallium		_		:::
7440-62-2	Vanadium		_		 [
7440-66-6	Zinc		_		¦¦
	Cyanide		- 1		—¦¦

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:


Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

TCLP EXTRACT

DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL DIVISION OF AIR & WASTE MANAGEMENT Site Investigation & Restoration Branch

MEMORANDUM

Date:

March 11, 1999

Subject:

George Gray School Organic Data Validation

From:

Robert M. Schulte My 3/11/99

To:

Lawrence J. Jones Project Officer

Through:

Karl F. Kalbacher KPF 3/11/99 Program Manager

Overview

The Sample Delivery Group consisted of ten (10) soil samples collected by the Site Investigation & Restoration Branch (SIRB) of the Department of Natural Resources and Environmental Control (DNREC). The SDG included one (1) rinse blank (SW-2), one trip blank (SW-1) and two (2) nonaqueous field duplicate pairs (GGTP-15 and GGTP-4C, GGTP-16 and GGTP-9D). The field duplicate pairs were not selected for organic analysis. All samples were field screened. Analysis selection was based upon the field screening results. The field duplicate pairs did not require organic analysis. The DNREC Environmental Services Section analyzed samples for Semivolatiles (7 samples), volatile (1sample) and Pesticide/PCBs (1 sample) per the chain of custodies. The samples were analyzed in accordance with the Standard Operating Procedures for Chemical Analytical Programs (SOPCAP) under the Hazardous Substance Cleanup Act (HSCA).

<u>Summary</u>

All samples were successfully analyzed for all targeted compounds. All instrument and method sensitivities were in accordance with the SOPCAP of HSCA.

Areas of concern with respect to usability are listed below according to the seriousness of the issue.

Major Issues

A practical quantitation limit standard was analyzed prior to any semivolatile sample analysis. The practical quantitation limit standard was 1 ng/ul. The standard CLP PQL standard is 10 ng/ul. This makes the practical quantitation limit ten times less than as reported on the CLP form 1's. The end data user should be aware of the variation.

Minor Issues

The semivolatile matrix spike and matrix duplicate recoveries and relative percent differences were reported outside of validation quality control limits. The Pyrene and Acenaphthene spike recoveries were elevated due to the presence of part per million levels of polyaromatic hydrocarbons. No qualification is necessary. A comparison of all nonspike compounds is as follows:

Concentration ug/Kg

Compound	GGTP-10D	GGTP10MS	GGTP10MSD	%RSD
Flourene	430	960	2001	21
Phenanthrene	2600	6300	1300	17
Anthracene	740	1500	330	22
Flouranthene	2800	5300	1500	28
Benzo(a)anthracene	2000	3800	1200	30
Chrysene	2000	3500	1200	35
Вепzo(b)flouranthene	1800	2800	920	35
Benzo(a)pyrene	1400	2300	940	39
Indeno(1,2,3-cd)pyrene	1200	2000	810	39
Benzo(k)flouranthene	640	1100	670	48
Dibenz(a,h)antracene	450	940	340	31
Benzo(g,h,i)perylene	1000	1400	670	45

^{*}Results outside of validation quality control limits

The semivolatile samples GGTP3S, GGSS4, GGTP10D, and GGTP6S were diluted. The sample extract was diluted to bring calibrated compounds within the linear range of the instrument. "E" flagged data will not be reported on the data summary table. The sample chromatogram exhibits coal ash/tar C11-C22 aromatic petroleum patterns. The results do not exceed HSCA guidance except GGTP3S. No qualification is necessary.

<u>Notes</u>

The maximum concentration of all compounds found in the analyses of the rinsate and preparation blanks are listed below. Samples with concentrations of common laboratory contaminants less than ten times (<10x) the blank concentration or with concentrations of other contaminants less than five times (<5x) the blank concentration will be excluded from the data summary tables and not considered chemicals of concern. The following compounds were found: bis(2-Ethylhexyl)phthlate 31 ug/Kg.

Semivolatile ending calibration C1703, contains Hexachlorobutadiene, Hexachloroethane, Benzo[k]flouranthene, Indeno[1,2,3-cd]pyrene, Dibenz(a,h)anthrcene and Benzo(g,h,I)perylene outside of validation quality control limits. All positive results and practical quantitation limits will be qualified "F" and "UJ" as estimated for these compounds, respectively, for the following samples: GGSW2.

Semivolatile ending calibration C1736 contains N-Nitroso-di-n-propyl-amine, 4-Nitroaniline and Benzo[k]flouranthene outside of validation quality control limits. All positive results and practical quantitation limits will be qualified"J" and "UJ" as estimated for these compounds, respectively, for the following samples: GGTP3S.

Semivolatile ending calibration C1732 contains Hexachlorocyclopentadiene, Indeno[1,2,3-cd]pyrene and Benzo[g,h,i]perylene outside of validation quality control limits. All positive results and practical quantitation limits will be qualified "J" and "UJ" as estimated for these compounds, respectively, for the following samples: GGTP2D, GGSS4, GGTP5S, GGTP6S and GGTP9S.

All volatile, semivolatile and Pesticide/PCB initial and continuing calibrations were within validation quality control limits. No qualification is necessary.

All volatile, semivolaitle and pesticide/PCB system monitoring compounds were within validation quality control limits. No qualification is necessary.

All volatile and semivolatile response factors were within validation quality control limits. No qualification is necessary.

All volatile and semivolatile system performance checks were within validation quality control limits. No qualification is necessary.

All Pesticide/PCB, semivolatile and volatile laboratory control samples were

Lawrence J. Jones George Gray School March 11, 1999

within validation quality control limits. No qualification is necessary.

All data was reviewed in accordance with National Functional Guidelines for Evaluating Organic Analyses with modification for use in EPA Region III.

All TICs were identified with a functionality group (e.g. unknown PAH). Unidentifiable TICs were accompanied with a "?" and the spectra and/or spectrum are included with the sample results behind the data summary tables. Some peaks are unidentifiable due to non-spectra matches or coelutions.

The preparation and analysis holding times for all samples were within validation quality control limits. No qualification is necessary.

All cleanup procedures were performed on the sample.

No field duplicate comparison could be achieved.

Attachments

Laboratory Form IS
Reviewed and Corrected Tentatively Identified Compounds
Support Documentation
Chain of Custody

RMS:slb RMS99018.doc DE-1138 II A 3

FIELD CHAIN OF CUSTODY

Department of Natural Resources and Environmental Control 89 Kinge Hwy., P.O. Bax 1481, Dover DE 19903 (102) 739-4774

Enrichmental Services Section — Division of Water Resources

Client Address:

391 LUKONS DRIVE DURET-SIRB NOVERSILE, DE 302) 395-3600 Phone:

9720

ROBOLT SCHOLTE RUBBY STANTE Report To:

Invoice To: ESS No.: Account:

ANALYSES

STATE D

7

'n

方

1330 1425

Ž 5

Laux. Howloats

SAMPLEMENTARING (MUNTIPLELLEN

PROJECT NAME GEORGE GRAY ELEM, SCHOOL

Sample | Sample | Martix* | Comp | Grab | Con-

586

Clical Sangle Description

Lab Log No.

ESS and

o V

0 // 727

7/6/ 10

09690

SW - surface water GW - ground water PW - potable water DI, - drum liquids OS - dann solida X - other (Please SW - solid waste ST - storniwater • Matrix Codes REMARKS SE - sediment Bl - biological 31/2 SL - sludge SD - solid Til - lissue Wil - wipe CSW/SW SO soil 15·5

Š

0735 752

7 77

667P-10,

98055370

6-4-99

Š

7.0

'n Š

۸,

79.00 3

17/1

7

S

<u>-</u> 7

> 98055930 667P-5 5 WIN <u> 98055940|CC TP - 1640 6.</u> 98055950|CG TP - 9*s*

28055920|667P-4c 8055910 6678- 45

18055900166777 3x 28055890 6677-24

specify) - Allandan RECEIVED BY: (signature) Skin-irritant (3 Other [] Legith Toxic 似 TIME Disposal by ESS 104. Authorized by: 0935 089) Non-Hazard [] Flammable [] 86-6-71 96/1/11 DATE: Sample Disposal: Return to Client [1] ... kELLINQUISHED BY: (signature) Potential Bazard Identification: COMMENTS:

Sample Conditions ESS USE ONLY

3. Received Intokentleaking Yes No 7,0.1 1. Shipped or Hand-delivered 2. Chilled or Ambient Notes: ESS park + 1 Custody Seal Water

20 24

I. Present on owier package

Unbroken on outer package...

:4, · Unbruken on sample 4. Property preserved 3. Present on sample Yes No.

5. Holding timescapited

6. Houles supplied ty ESS Yes (No.

000900

7. Field Filtered ź

5. Discrepancies between sample labels and COC record? £3

950216.KAK

White - Original - Yellow - ESS Copy - Pink - Cikru Copy

PIELD CHAIN OF CUSTODY

.. Page 2 of 2

Environmental Stricts Station — Division of Water Resources Department of Natural Resources and Environmental Control 49 Kings Hvy., F.O. Baz 1404, Dever DE 1993 (193) 739-4771

É			١
	₹	H	
		}}	
	\mathbb{Z}	y_i	7

9750 から らいに ひら DNRSG SIFB 391 CURENS DR (44) 395-2600 Client: Address; Phone:

ROSEN SCHULLE Y VIT 20854 Report To: Javoice To: Account: ESS No.:

			REMARKS				:							• Mafrix Codes	AI - air WW - waste water DI - biological - PW - two alse water	SO - soil SW - surface water		SD - solid DS - drum solids Of a city	The tissue of the summenter	WI - wipe X - other (Please
		· ·	1-													1 - 1 - 1 - 1			20660cm	
ANALYSES	S. 5	VDW	<i>₽</i>	1	í		- >		•					=		RECEIVED BY: (signature)		1	10 M	
AN,		572,	\17559 	X	1	-	X			:				Other		EIVED B			7	,
		সূণ	7+ N&	<u> </u>	X	١	χ							₩.		Rec			SSS enly:	
_	<u></u>	<u>.</u> 2	Con-	<u> </u> 		<u>X</u>	X				-			kin-irriu		\mathbb{F}_{1}			ESS 98	
-			35 20 <u>1</u> 8	X 12	ΙŽ	χ	X							N SI						
			Count			/\	<u>, </u>							Foxic (rized b	ami.	039		0935	
			Matrix	S	ર		75							\mathcal{A}	Audio	_	~		2	
			Sample Sample Manix* Comp Grab Line Time	Ę	1947	13 ell	1515			:				minable	+₽ss	ėi	<i>∞</i>		ķ	
	ለህወ		Sample Date	17/21	1/2/	77.	τ/τ,							Fla	Disposal by ESS 4.4. Authorized by:	DATE	66/2/71	-	36-6-21	
	GCOXOC GRAG FLOW, SCHOOL	THE STATE OF THE S	Client Sample Description	6678-16A			4	,		/		/	•	Potential Hazard Identification: Non-Hazard [Flammable H. Toxic & Skin-izzinan A. Other	Sample Disposal: Return to Client [] Disposa	RELINQUISTIED BY: (signature)	1			!
PROJECT NAME	650	SAMPLERS (Signary)	ESS only Lab Log No.	98055995	380 56000 66 55-	98050 av	98056020					*		Potential Haze	Sample Dispos					COMMENTS:

ESS USE UNLT	Sample Candilber:

No. No. Yes No. 3. Received brokenthesking 1. Shaped or Hand-delivered 2., Chilled or Amblem
Norm: 655 21.King
Custody Seal Wal.

3. Present on sample Yes No. 1 2. Unbroken on outer package.

5. Holding Bingsexplined
Yes No 14. Unbroken on sample Yes ' No

thired 5, Buttles supplied to 17, Held Filtered Yes, No. 7 (et al. 18)

S. Discepanisies between sample labels and COC record? Yes and the North

Pink - Client Cupy White - Original - Yellow - ESS Copy

1. Protein on outer package

me Graye Gray Shool

DATA SUMMARY FORM: SEMIVOLATILE (1)

Soli.
(Media) SAMPLES
(UNITS) 49/4

Sample Number					:			7/61/
Dilution factor Sample Location	A5575	68 TP10D G67P3S	G6792D	584199	627755	GETPSS GETPUS	667795	65.22
			}		<u> </u>	-		_
Thenol								
bis (2-Chlorochlyt) ether	. 							
2-Chlorophenol				-				
1.3-Dichlorobenzene					1			
1,4-Dichlorobenzene								
1.2.Dichlorobenzene		-		-		-		
2-Methylphenol								
2.2. oxybis(1. Chloropropane)		_		1	1	+		-
4 - Methylphenol					1	1	+	
N-Nitroso-di-n-propylamine				45	-	+		170
Hexaciloroethane						-		
Nitrobenzene					-	 -		
Isophorone			+					
2-Nitrophenol			 					
2,4-Dimethylphenol			1	1	-		-	-
bis(2-Chloroethoxy)melinne							_	
Z,4-Dichloroplumol					 			
1,2,4-Trichlorobenzene		,	+	1		12	120 5	-
Naphthalene	220	7		2007	<u> </u>			
4 -Chlorophiline (_	1			

DATA SUMMARY FORM: SEMIVOLATILE (2)

Sort
(Media) SAMPLES
(UNIFS) 49/4

Sample Number Dilution Factor Sample Location	001439 pss39	499 1	90%	(NETPAD)	60 7735	- W	667.95	- w	667765		60 1725	7/60	
Hexachlorebutediene			<u> </u>			H		-		╀	ŀ		L
4-Chiero-3-methylphenot			H				-	H		H			
2-Aleilhylnsphilialeite	328	26	\ <u>'</u>		\$00	5		-	011	 -	75		Ι
Hexachicacyclopeniadiene	Γ	æ	1	77	L	 		V ₃	${}^{-}$	L.	1		
2,4,6 Trichlerophenol			L			H		╁	l	+	-		Ι
Z,4,5-Trichlorephenol						-		╁		╀	-		T
2-Chletenaphilislene			L			┞		H	T	-			
Z-Nitreanifine						t		H		╀	t	-	L
Physibylphibalaic	_		-			t		+	T	╀╴] 		
Acensphiliplene		180	b		ħ	L	1	ŀ	500		7100		I
2,6-1)itáliceletre			L			╁		ŀ	✝	ļ.	Т.		I
3-Misoanishe			L			H		H	T	╀	<u> </u>		ľ
Acenaphibene	005/	300.80	P		390	H		H	240	 -	1505		T
Z,4 Dinitrophenot							<u> </u>	-		}			I
4 - Mirephenol						\vdash		├		H	<u> </u>		Γ
Ustrazoluran	4	16.300	<u>ل</u> م		200	H		-	06	Ļ	160		1
2,4 (Ynitretelnere			\vdash			-				╀	П		
Ciethylphthalale						╁╌		╁		╁	l		Γ
4. Chlorophenyi -phenyi elher						 		-	T	╀			Ι
Nuorene	1300	430	۰		100	-	50%	ŀŋ	35.	۲,	200		
4-Nitroeniline					Г	2		\vdash		Ļ			
4,6-Oitdiro-2-mellylphenol			-						l	H			
						H				L	-		
			Ì								4		•

Hance George Gay Shool

DATA SUMMARY FORM: SEMIVOLATUE (3)

Social Samples
(Media) Samples
(Units) 1991

Sample Number Utilution Tactor Sample Location	55.25	#	G.C.T.	\$	66554 GCTOWN GCTP15 GCTP65 GCTP65	3	277.25	88.	পু	W.09	3	G&TP18		49/2	(-1	
N-Nitrosodiphenylamine (1)		+		+		+	-		\mathbb{H}					H		Н
4-Bromophenyl-phenylether		\vdash				-	-									\dashv
Hexacilorobenzene		\vdash				\vdash			-							
Fentachlorophenol																
Menauthrene	2300	Ľ	2600	-		<u>'</u>	0000/	490	5	200		1300		-		-
Asifaracesse	ause		070	H		Ĥ	3700	19	<u>ل</u> ا	470			۱,		_	
Carbazote	0081	_	110			Н	1/20	30	Ъ	320	ኃ	240	<u>۲</u>			
Dè-n-butytphilialate		H														
Fluorentliene	9100	H	2800	-		. 7	25000	140	0	2500		1900		-		-
Prene	870		3400			H	20017	950	٥.	2000		2400			_	
Bulytbenzylphihaloic							57	ų	-							
le l					<u> </u>											
Denzo(a)authracene	aess		2000	H			ans	250	_	1300		1200	\sqcup			
Clirysene	6100	-	1000			_	Mars	650		1900		1400				
bis(2 - Ethylliexyl) phthalale		Н		\vdash		Н					Ц					٠.,
Di-n-ocipipiii)ufate						<u>_</u>										
	Srow	\vdash	1800			Z	desco	560		2000		1400		_		
Denzo(k) (hozaniligne	3.50	\vdash	040				300	J 390		160		480	1	7		
penzo(o)bătene	4900		1100				11000	550		1400		1000		-		
Indeno(1,2,3-cd)Pyrene	3100 3	5	1200	'n	ŭ	[2]	8920	440	h	940	h	770	ካ	7	t.J	
Dibenz(a,h)antigracene	1500	Ĺ	4.50	Н		Н	5400	160		450		310	کر	3	53	\dashv
Benzo(g,h,i)perylene	2000 5	<u>ب</u>	-	'n	7)	(A)	7300	330	þ		ю	520	'n	L.	57	

When Cong May Shop months Dates 100

DATA SUMMARY FORM: VOLATILES (1)
Sold (Media) SAMPLES
(UNITS) 43/4

	-				-			-											-	_	
										_											
		:																			
		<u> </u>														_					
									i												
					į																
			_!	Н						-		_									
	_					_					_					-					
																		L			
wo2		-					L									-	<u></u>				
200																					
54) 19/4							L						_					_			
35				_	-	_			<u> </u>												
P-26		-	<u> </u>				H		-	-						-					
667							Ŀ		L	j			-						L		
Sample Number 667P.2D CC5W) CC5W)2.										(total)				<u> </u>	2		anc				
Samp Offic Samp	IAIC	ij	놽	ڀ	Chloride		ilige Filge	oethene	rethane	velhene		octhane		loroethan	achlorid	يو	orometh				
	Chlorome thane	Promomethane	Vinyl Chloride	Chloroethane	Methykne Chloride	Acetone	Carbon Disulfide	1, I Dichloroethene	1, i - Dichloreethane	1,2-Dichloroethene (total)	Chloroform	1,2-Dichloroethane	dimone	1,1,I - Trickloroethane	Carbon Tetrachloride	Vinyl Acetate	Promodichloromethane				
	3	Ę	5	Ē	훋	ĕ	ij	=	Ė	1,2	邑	2	2-B	Ξ	Ü	5	2	L	L		

welling Date (1): 2 / 100 / 2 / 100

DATA SUMMARY FORM: VOLATILES (2)
(Média) SAMILES
(UNITS) 49/4

		_											_						
	_											<u> </u>							
															:				
7/6n 18075								:											-
Then Then Then The The Then The The Then The Then The Then The The Then The The Then The The Then The The The The The The Then The						-													
, QE-42%				-	-														
Sample Number Dilution factor Sample Location	t 2-Dichloropropane	cis- i.3-Dichloropene	Trichloroethene	Dibromochloromethane	i,i,2.Trichloroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-Fenianone	2-Hexanome	Tetrachloroethene	i,i,2,2-Tetrackioroethane	Toluene	Chlorobenzene	Ethylbenzene	Styrene	Xyfene (total)		

Page 1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	DE DNR	EC:DIV OF WATER RES.	Contract: DNREC:DAWM	GGT	TP2D
Lab Code:	DE023	Case No.:	SAS No.:	SDG No.:	#6960
Matrix: (se	oil/water)	SOIL	Lab Sample ID:	9805589	000030
Sample wt/	vol:	250.6 (g/mL) G	Lab File ID	:D11236.D	000000
Level: (I	low/med)	MED	<u> </u>	·	
,	•	<u>MED</u>	Date Received:	12/7/98	
% Moisture	e: not dec.	0	Date Analyzed:	12/9/98	
GC Colum	n: <u>DB624</u>	1D:0.53	(mm) Dilution Factor:	1.0	
Soil Extrac	i Volume:	100000 (uL)	Soil Aliquot Volume:	100	(uL)
			Concentration Units:		
C	AS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q	
5	1.07.0				
	4-87-3	Chioromethane	200	U	
·	4-83-9	Bromomethane	200	U	
	5-01-4	Vinyl Chloride	200	U	
	5-00-3	Chloroethane	200	U	
<u> </u>	5-09-2	Methylene Chloride	200	U	
<u> </u>	7-64-1	Acetone	200	U	
<u> </u>	5-15-0	Carbon Disulfide	200	υ	
<u> </u>	5-35 <u>-4</u>	1,1-Dichloroethene	200	υ	
<u> </u>	5-34-3	1,1-Dichloroethane	200	U	
 	40-59-0	1,2-Dichloroethene (total)	200	U	
ļ	7-66-3	Chloroform	200	υ	
_	07-06-2	1,2-Dichloroethane	200	Ū	
[7]	8-93-3	2-Butanone	200	U	
7	1-55-6	1,1,1-Trichloroethane	200	U	
50	6-23-5	Carbon Tetrachloride	200	U	
	5-27-4	Bromodichloromethane	200	. U	
7:	8-87-5	1,2-Dichloropropane	200	Ū	
16	0061-01-5	cis-1,3-Dichloropropene	200	υ	
<u> </u>	9-01-6	Trichlorgethene	200	Ū	
112	24-48-1	Dibromochloromethane	200	U	
25	9-00-5	1,1,2-Trichloroethane	200	Ū	
71	1-43-2	Benzene	200	บั	
10	0061-02-6	trans-1,3-Dichloropropene	200	υ	
7:	5-25-2	Bromoform	200	บ	
10	08-10-1	4-Methyl-2-Pentanone	200	บ	
59	91-78-6	2-Hexanone	200	บ	
17	27-18-4	Tetrachloroethene	200	u	
79	9-34-5	1,1,2,2-Tetrachloroethane	200	บ	
10	08-88-3	Toluene	200	U U	
10	08-90-7	Chlorobenzene	200	Ü	
10	00-41-4	Ethylbenzene	200	U	
_	00-42-5	Styrene	200	Ü	
	330-20-7	Xylene (total)	200	- u	
		~ (. 200		

200

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: <u>DE DNREC</u>	DIV OF WA	TER RES.		Contract:	DNREC:DAWM	600031
Lab Code: DE023	•	Case No.:		SAS No.:		SDG No.: #6960
Matrix: (soil/water)	SOIL	_			Lab Sample ID:	9805589
Sample wt/vol:	250.6	_(g/mL)	<u>G</u>		Lab File ID:	D11236.D
Level: (low/med)	MED	_			Date Received:	12/7/98
% Moisture; not dec.	0	_			Date Analyzed:	12/9/98
GC Column: DB62	<u></u>	_ ID	0.53((mm)	Dilution Factor:	1.0
Soil Extract Volume:	100000	_(uL)			Soil Aliquot Volume:	100 (uL)
				_		

Concentration Units:

		COLOURIANDE CINIS.
Number TICs found:	0	(ug/L or ug/Kg) ug/Kg

CAS Number	Compound Name	ŘТ	Est. Conc.	Q
1.		1 —		
2.			1	
3.			 	
4.				
5.			i	
6.				
7.				
8.			·	_
9.				
10.	·		· - · · · · - · - · - · - · · - · · - · · - · · - ·	
11.		 	1	
12.	······································			
13.	<u>-</u> -	T		
14.				
15.		<u> </u>		
16.	<u></u>			_
17.	<u> </u>	-		
18.				
19.	·			
20.	<u> </u>		<u> </u>	
21.	· · · · · · · · · · · · · · · · · · ·	<u> </u>	† .	
22.			··-	
23.	<u> </u>		 	
24.	<u> </u>			 -
25.	· · · · · · · · · · · · · · · · · · ·	 		
26.		1	 	
27.		1	†	
28.	·	 	+	
29.		1	- 	
30.	· .	 	+	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GGSW1

Lab Name: <u>D</u>	E DNREC	:DIV OF W	ATER R	ES.	Contract;	DNREC:DAWM			
Lab Code: D	E023	Cas	se No.: _		SAS No.:		SDG No.:	#6960	
Matrix: (soil/w	ater)	WATER				Lab Sample ID:	9805601	. €60	020
Sample wt/vol:		5.0	(g/mL)	ML	_	Lab File ID:	D11230.D		
Level: (low/r	ned)		•			Date Received:	12/7/98		
% Moisture: n	ot dec.	0	•			Date Analyzed:	12/9/98		
GC Column: D	B624	_	ID:_	0.53	_(mm)	Dilution Factor:	1.0		
Soil Extract Vol	lume:		(uL)			Soil Aliquot Volume:		(uL)	

Concentration Units:

CAS No.	Compound	Concentration Units: (ug/L or ug/Kg) ug/L	Q
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	
75-00-3	Chloroethane	10	υ
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	U U
75-34-3	1,1-Dichloroethane	10	U
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	10	υ
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	U U
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	Ŭ
124-48-1	Dibromochloromethane	10	T U
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2	Benzene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	Ü
75-25-2	Bromoform	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	
79-34-5	1,1,2,2-Tetrachloroethane	10	- T
108-88-3	Toluene	10	T T
108-90-7	Chlorobenzene	10	. <u> </u>
100-41-4	Ethylbenzene	10	- 0
100-42-5	Styrene	10	υ
1330-20-7	Xylene (total)	10	Ü

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		TENTATI	VELY IDE	INTIFIED C	OMPOUN	IDS	GG	SW1
Lab Name: DE D	NREC:DIV OF W	ATER RES	•	_ Contract:	DNREC	:DAWM		 0002
Lab Code: DE02	23	Case No.:		SAS No.:			SDG No.:	
Matrix: (soil/wate	m) WATER				Lab	Sample ID:	9805601	
Sample wt/vol:	5.0	(ġ/mL)	ML	_		Lab File ID:	D11230.D	
Level: (low/me	d)				Date	Received:	12/7/98	
% Moisture: not	dec. 0				Date	Analyzed:	12/9/98	_
GC Column:	DB624	_ п	0.53	_(mm)	Dilu	tion Factor;	1.0	_
Soil Extract Volum	ne:	(uL)			Soil Aliqu	iot Volume;		(uL)
				Concentration	on Units:	•		
Number TICs four	nd: 0			(ug/L or	ug/Kg)	ug/L		
	CAS Number	<u></u>	Compour	id Name	RT	Est. Conc.	Q]
	2.				<u> </u>]
	3,	 -		.	 	1	 	ł
	4.				<u> </u>	<u> </u>	 	1
	5.					<u></u>		j
	7.	 			 	ļ	<u> </u>	
	1 1,	1						

CAS Number							
	Compound Name	RT	Est. Conc.	Q			
1.							
2.		<u></u>					
3.							
4.							
5.							
6.	· · · · · · · · · · · · · · · · · · ·						
7,	<u> </u>						
8.							
9.							
10.			·				
11.							
12.							
13.							
14.							
15.	<u>.</u>						
16.							
17.	 -		-	· · ·			
18.			· · ·				
19.			i.				
20.	<u>.</u>		<u> </u>				
21.	-						
22.			<u> </u>				
23.	<u> </u>						
24.	· -						
25.	····						
26.							
27.				· · · · · · · · · · · · · · · · · · ·			
28.	<u> </u>						
29.							
30.	· · · · · · · · · · · · · · · · · · ·		<u> </u>				
[30.			l				

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

GGSW2

Lab Name:	DE DNREC	DIV OF V	VATER R	ES.	Contract:	DNREC:DAWM			
Lab Code:	DE023	C	ase No.:		_ SAS No.:		SDG No.:	7 6960	
Matrix: (soi	!/water)	WATER	_			Lab Sample ID:	9805602	600	025
Sample wt/ve	ol:	5.0	_(g/mL)	ML	_ _	Lab File ID:	D11231.D	3 	<u> </u>
Level: (lo	w/med)		_			Date Received:	12/7/98		
% Moisture:	not dec.	0	_			Date Analyzed:	12/9/98		
GC Column:	DB624		ID:	0.53	(mm)	Dilution Factor;	1.0		
Soil Extract	Volume:		_(uL)			Soil Aliquot Volume:		(uL)	

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg) ug/L	_ Q.
74-87-3	Chloromethane	10	υ
74-83-9	Bromome#hane	10	U
75-01-4	Vinyl Chloride	10	υ
75-00-3	Chloroethane	10	U
75-09-2	Methylene Chloride	10	U
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	Ū
75-35-4	1,1-Dichloroethene	10	υ
75-34-3	1,1-Dichloroethane	10	U
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	U
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	T U
79-00-5	1,1,2-Trichloroethane	10	U
71 <u>-4</u> 3-2	Benzene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	Ü
75-25-2	Bromoform	10	Ü
108-10-1	4-Methyl-2-Pentanone	10	Ü
591-78-6	2-Hexanone	10	- Ü
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	υ
108-88-3	Toluene	10	Ū
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	Ū
100-42-5	Styrene	. 10	ប
1330-20-7	Xylene (total)	10	TU

FORM I VOA

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNTS

EPA SAMPLE NO.

	т	ENTATIVELY IDI	ENTIFIED CO	OMPOUN	ID\$	GG	SW2
Lab Name: DE DNR	EC:DIV OF WAT	FER RES.	Contract:	DNREC	:DAWM		0026
Lab Code: DE023	(Case No.:	SAS No.:			SDG No.:	
Matrix: (soil/water)	WATER			Lab	Sample ID:	9805602	
Sample wt/vol:	5.0	(g/mL) ML	_		Lab File ID:	D11231.D	
Level: (low/med)				Date	Received:	12/7/98	
% Moisture: not dec.	0			Date	Analyzed:	12/9/98	
GC Column: DE	624	ID: 0.53	_(mm)	Dilu	tion Factor:	1.0	
Soil Extract Volume:		(uL)		Soii Aliqı	ot Volume:		(uL)
Number TECs forms	0		Concentration				
Number TiCs found:			(ug/L or u	ig/Kg)	ug/L		_
	S Number	Compou	nd Name	RT	Est. Conc.	Q	
	<u>l.</u>						ļ
<u> </u>	<u>. </u>				<u> </u>		
	3. 1 .				 -		
	<u></u> 5.	 -			 		
	5.			 	 		-
<u>-</u>	7.					1	ļ
	3.			-			
<u> </u>	ə.				 	<u> </u>	1
10	·				 		1
—	l,						1
12	2.				_	<u> </u>	1
13	3.	···-			-		1
14	1,				 		1
1:	5.			,	1		1
16	5.			_	1		1
17]
11							
19					_		
20							
2					<u> </u>		!
2:				ļ <u> </u>		<u> </u>	1
2:			<u></u>	1	<u> </u>	<u> </u>]
<u> </u>	1 .	 	•	<u> </u>		<u> </u>	1
. 2		 -				ļ	4
20		 				<u> </u>	4
_27	<i>.</i>	1			I	I	I

28. 29. 30.

DATA SUMMARY FORM: PESTICIDES AND PCB'S

Sa, 2

(Media) SAMPLES

(UNITS) 19/14

			ŀ			ļ)									
Sample regarder Dilution factor Sample Location	66 7420	66 54.2	4 %													
Appli - BHC	<u> </u>			}	-	-		L		ŀ		L		1		Į
beta-BHC	!		L			1		\perp		4		\downarrow		1		Ţ
delta-BIIC			L	-		ŀ		1		4		1		1		\prod
gemma-BIIC(Lindane)				-		l		1		1		Ţ		‡		brack
Heptachior	<u> </u>		L			ŀ		Ţ.		\downarrow		1		1	İ	1
Afdrin					L	ŀ	ľ	Ţ		1		-		1		
Heptachlor epoxide				-	L	-		1		1		Ţ		1		
Endosidian I				-	 -	1		Ţ		4		Ţ		+		
Dicklein			L			-		1		1		7		†		
349-54				$\frac{1}{1}$		ļ		Ţ.		╀		1		‡		
Lndrin						<u> </u>	Ì	Ţ		1		1		1		
Endosulfan II			-	-		1				1		1		1		
4't-ppp				<u> </u> 	ļ	1				1	1	1		+		1
Indosulfan sulfate				-		1		Ţ		Ţ				1		I
4,4-ppr			<u> </u>	+	<u> </u>	ļ		I		_		1				
Methoxychlor				ŀ		-		Ţ		\downarrow		1		‡		
Endrin ketone			ļ ,	-		İ				$oldsymbol{1}$		I	İ	‡		
Endrin eldeliyde				-		ļ		I		1		1		1		I
alpha-Chlordane			<u> </u>	-		ļ				I	İ	1		‡		
Samma - Chlordane			<u> </u> 		ļ.	ļ		Ţ		Ţ		1		1		
Toxaphene			Ĺ	┝		İ						ļ		†		
Aroclor: 1016				<u> </u>		†			İ	Ţ		1		1		T
Aroclor-1221			-			<u> </u>		1		1		1		1		
Arcelor-1232	;		L	_		†		Ţ		Ţ		1		1		Ţ
Aredor-1242			-			+		1	ŀ	ļ		1		1		1
Arcelor-1248								1	İ	1		1		1		Ţ
Apoclet-1254			<u> </u>		L	 		l		1		1		1		
Aroclor-1260			-	 		ļ		İ		Ţ		1	Ì			
						_	i			_						

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: DE DNREC: Div of Water Res Contract: DNREC: DAWM

GGSW-2

Lab Code:DE023

Case No.

SAS No.:

SDG No.:#6960

Matrix: (soil/water)WATER

Lab Sample ID: GC3A7673

Sample wt/vol: 1000 (g/ml)ML

Lab File ID:

% Moisture:

decanted: (Y/N)

Date Received: 12/07/98

Extraction: (SepF/Cont/Sonc)CONT

Date Extracted: 12/08/98

Concentrated Extract Volume: 10000 (uL)

CAS NO.

Date Analyzed: 12/29/98

Injection Volume: 1.0 (uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N)N pH: 7.0

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS (ug/L or ug/Kg)UG/L

319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC(Lindane) 76-44-8Heptachlor 309-00-2		U
319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC(Lindane) 76-44-8		
58-89-9gamma-BHC(Lindane) 76-44-8Heptachlor 309-00-2Aldrin 111024-57	0.05	<u>U</u>
58-89-9gamma-BHC(Lindane) 76-44-8Heptachlor 309-00-2Aldrin 111024-57		Ū
76-44-8Heptachlor 309-00-2		Ū
309-00-2Aldrin 111024-57Heptachlor epoxide 959-98-8Endosulfan I 60-57-1	0.05	U
959-98-8Endosulfan I 60-57-1Dieldrin 72-55-9		U
959-98-8Endosulfan I 60-57-1Dieldrin 72-55-9	0.05	ţ
72-55-94,4'-DDE 72-20-8Endrin 33213-65-9Endosulfan II 72-54-84,4'-DDD 1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor		U
72-20-8Endrin 33213-65-9Endosulfan II 72-54-84,4'-DDD 1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor	0.10	U
33213-65-9Endosulfan II 72-54-84,4'-DDD 1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor	0.10	Ų
72-54-84,4'-DDD 1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor	0.10	U
1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor		U
50-29-34,4'-DDT 72-43-5Methoxychlor		U
72-43-5Methoxychlor	0.10	U
72-43-5Methoxychlor 53494-70-5Endrin ketone		Ū
53494-70-5Endrin ketone	0.50	Ū
	0.10	U
7421-93-4Endrin aldehyde	0.10	U
5103-71-9alpha-Chlordane	0.05	U
5103-74-2gamma-Chlordane		U
8001-35-2Toxaphene		U
12674-11-2Aroclor-1016	1.0	ប
11104-28-2Aroclor-1221		U
11141-16-5Aroclor-1232		U
53469-21-9Aroclor-1242		<u>U</u>
12672-29-6Aroclor-1248		Ü
11097-69-1Aroclor-1254		Ü
11096-82-5Aroclor-1260	1.0	U

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: DE DNREC: Div of Water Res Contract: DNREC: DAWM

GGTP-2D

Lab Code:DE023

Case No.

SAS No.:

SDG No.:#6960

Matrix: (soil/water) SOIL

Lab Sample ID: GC3A7726

Sample wt/vol:

30.0 (g/ml)G

Lab File ID:

% Moisture: 17 decanted: (Y/N) N

Date Received: 12/07/98

Extraction: (SepF/Cont/Sonc)SONC

Date Extracted:12/09/98

Concentrated Extract Volume:

CAS NO.

Date Analyzed: 1/07/99

Injection Volume: 1.0 (uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup:

(Y/N)Y

pH: 4.8

5000 (uL)

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS (ug/L or ug/Kg)UG/KG

319-84-6alpha-BHC	2.0	U
319-85-7beta-BHC	2.0	U
319-86-8delta-BHC	2.0	Ū
58-89-9gamma-BHC(Lindane)	2.0	ਹ
76-44-8Heptachlor	2.0	Ŭ
309-00-2Aldrin	2.0	Ü
111024-57Heptachlor epoxide	2.0	Ü
959-98-8Endosulfan I	2.0	Ū
60-57-1Dieldrin	4.0	Ū
72-55-94,4'-DDE	4.0	U
/2-20-8Endrin	4.0	<u>U</u>
33213-65-9Endosulfan II	4.0	U
72-54-84,4'-DDD	4.0	Ū
1031-07-8Endosulfan sulfate	4.0	U
50-29-34,4'-DDT	4.0	<u>ט</u>
/2-43-5Methoxychlor	20.	U
53494-70-5Endrin ketone	4.0	<u>u</u>
7421-93-4Endrin aldehyde	4.0	Ū
5103-71-9alpha-Chlordane	2.0	Ū
5103-74-2gamma-Chlordane	2.0	<u> </u>
8001-35-2Toxaphene	200.	<u>ט</u>
12674-11-2Aroclor-1016	40.	U
11104-28-2Aroclor-1221	81.	<u>U</u>
11141-16-5Aroclor-1232	40.	Ū
53469-21-9Aroclor~1242	40.	U
12672-29-6Aroclor-1248	40.	Ū
11097-69-1Aroclor-1254	40.	<u> </u>
11096-82-5Aroclor-1260	40.	<u>U "</u>

1B

	1B	_	EPA SAMPLE NO.
MIVOLATILE ORG	ANIÇŞ ANAI	YSIS DATA SHEET	
THATTE BES	<u>.</u> .		GGSS4

Lab Name:	DE DNRE	SEMIVOLATILE ORGA	NICS ANALYSIS DATA SHEET Contract: <u>DNREC:DAWM</u>	GGSS	4
Lab Code:	DE023	Case No.:	SAS No.:	SDG No.: #69	260
Matrix: (sc	il/water)	SOIL	Lab Sample ID:	9805600	000114
Sample wt/v	vol:	30.2 (g/mL G	Lab File ID	P2135.D	OOOTIA
Level: (le	ow/med)	LOW	Date Received:	12/7/98	
% Moisture	: 17	decanted: (Y/N):	N Date Extracted:	12/8/98	
Concentrate	d Extract Vo	lume:500(uL)	Date Analyzed:	1/11/99	
Injection Vo	olume:	(uL)	Dilution Factor:	1.0	
GPC Clean	up: (Y/N)		: <u>6.36</u>		
			Concentration Units:		
C.	AS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q	
11	1-44-4	bis(2-Chloroethyl)ether	400	Ü	
54	11-73-1	1,3-Dichlorobenzene	400	U	
10	06-46-7	1,4-Dichlorobenzene	400	U	
95	5-50-1	1,2-Dichlorobenzene	400	υ	
10	08-60-1	2,2'-oxybis(1-Chioropropane)	400	U	
67	7-72-1	Hexachloroethane	400	U	
62	21-64-7	N-Nitroso-di-n-propylamine	400	Ü	
98	3-95-3	Nitrobenzene	400	U	
78	3-59-1	Isophorone	400	U	
11	11-91-1	bis(2-Chloroethoxy)methane	400	U	
12	20-82-1	1,2,4-Trichlorobenzene	400	U	
91	1-20-3	Naphthalene	920		
10)6-47-8	4-Chioroaniline	400	. U	
87	7-68-3	Hexachlorobutadiene	400	Ū	
91	1-57-6	2-Methylnaphthalene	700		
73	7-47-4	Hexachlorocyclopentadiene	400	U	
91	1-58-7	2-Chloronaphthalene	400	υ	
88	3-74-4	2-Nitroaniline	400	υ	
20)8-96-8	Acenaphthylene	390	1	
13	31-11-3	Dimethylphthalate	400	υ	
60	06-20-2	2,6-Dinitrotoluene	400	Ü	
99	9-09-2	3-Nitroaniline	400	U	
83	3-32-9	Acenaphthene	1500		
13	32-64-9	Dibenzofuran	970		
<u> </u>	21-14-2	2,4-Dinitrotoluene	400	υ	
86	5-73-7	Fluorene	1300		
<u> </u>	-66-2	Diethylphthalate	400	Ü	
70	005-72-3	4-Chlorophenyl-phenylether	400	U	

400

400

400

400

8600

Hexachlorobenzene

4-Nitroaniline

Phenanthrene

100-01-6

86-30-6

101-55-3

118-74-1

85-01-8

N-Nitrosodiphenylamine (1)

4-Bromophenyl-phenylether

U

Ų

U

Ų

IC SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET!

EPA SAMPLE NO.

Lab Nai	me: DE DNRE	SEMIVOLATILE OR	Contract:	DNREC:DAWM	ee	SS4	
Lab Co		Case No.:	SAS No.:		SDG No.:	#6960	
Matrix:	(soil/water)	SOIL		Lab Sample ID:	9805600	0001	15
Sample	wt/vol:	30.2 (g/mL G		Lab File ID:	P2135.D	0003	
Level:	(low/med)	LOW		Date Received:	12/7/98		
% Mois	sture: 17	decanted: (Y/)	N): <u>N</u>	Date Extracted:	12/8/98		
Concen	trated Extract Vo	olume: 500 (uL)		Date Analyzed:	1/11/99		
Injectio	n Volume:	(uL)		Dilution Factor:	1.0		
GPC CI	leanup: (Y/N)	Y	pH: <u>6.36</u>				
			Concentration	n Units:			
	CAS No.	Compound	(ug/L or ug/	Kg) <u>ug/Kg</u>	Q		
	120-12-7	Anthracene		2400 .			
	86-74-8	Carbazole		1800			
	84-74-2	Di-n-butylphthalate		400	Ü		
	206-44-0	Fluoranthene		9000	E		
	129-00-0	Pyrene		11000	E		
	85-68-7	Burylbenzylphthalate		400	Ū		
	56-55-3	Benzo(a)Anthracene		8700	E		
	91-94-1	3,3*-Dichlorobenzidine		400	Ū		
	218-01-9	Chrysene		5900	Ē		
	117-81-7	bis(2-Ethylhexyl)phthalate		280	лв		
	117-84-0	Di-n-octylphthalate		400	Ü		
	205-99-2	Benzo(b)fluoranthene		7500	<u> </u>		
	207-08-9	Benzo(k)fluoranthene		410	 5 		
	50-32-8	Benzo(a)pyrene	 	4500	हिं		
	193-39-5	Indeno(1,2,3-cd)pyrene		3100	اس.سا		
	53-70-3	Dibenz(a,h)anthracene		1500			
	191-24-2	Benzo(g,h,i)perylene		2000	· ··		
	171-24-2	Benzo(g,n.t/perylene		2000	 		
				•••			
							
					 		
	<u> </u>				1		
				<u> </u>			
		,			<u> </u>		
	<u> </u>				<u> </u>		
	L						
				<u> </u>	<u> </u>		
				- 		ì	

(1) - Cannot be separated from Diphenylamine

Data File : c:\hpchem\1\data\da40111.cim\p2135.d Acq On : 11 Jan 99 8:04 pm Vial: 14 Operator: CIM

: GGSS4 Sample

Inst : 5972-DEL4 Multiplr: 1.00 : ESN:98056000 Misc

: K:\METHODS\I40111B.M : CLP BNA Calibration Method

Title Librarv	_	Calibration			
_	•				
R.T.	Conc	Area	Relative to	ISTD	R.T.
24.50	$8.12 \text{ ng/}\mu\text{l}$	909559	Perylene-d12		20.45
Hit# of	20 	Tentative ID	Ref#	CAS#	Qual
2 (R) - (- 3 3 (4H) - 3 4 6 - (3 - B))-14-Methyl Phenanthreno	lohexyltetradeca -8-hexadecyn-1-c one, 4a,4b,5,6,7 -2(1H)-pyridinon rimethyl-	34407 7,8 W 33133 ne 26462	055255-70-4 064566-18-3 057684-12-5 000000-00-0 055402-13-6	60 42 38 27 25
Abundance	Scan 2126 6995 125	(24.503 min): P	2135.D (-,*)	m/z 95.00 24.14 m/z 69.00	24.96 90.21%
m/z>	100	200 300	400	111/2 09.00	JU.218;
Abundance 5000 -	#38558: Antl	191 274	ohexyltetradec	24.14 m/z 55.00	24.86 75.74%
m/z>	100	200 300	400] ~~~~~~\ \	~~~~
Abundance	#34407: {R}	-(-)-14-Methyl- 195 252	8-hexadecyn-1-	24.14 m/z 109.00	24.86 75.42%
m/z>	100	200 300	400	I may ment if	~~~~
Abundance	#33133: 3(4)	H)-Phenanthreno		1	
5000 -	1 0 9 69	246 61 231		24.14 m/z 81.00	24.86
m/z>	100	200 300	400	24.14	24.86

p2135.d I40111B.M

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGSS4

Lab Name: DI	E DNREC:D	IV OF W	ATER RES		Contract:	DNREC:DAWM	000116
Lab Code: Di	E023		Case No.:		SAS No.:		SDG No.: #6960
Matrix: (soil/wa	ater)	SOIL	_			Lab Sample ID:	9805600
Sample wt/vol:	_	30.2	_(g/mL)	<u>G</u>		Lab File ID:	P2135.D
Level: (low/n	ned)	LOW	_			Date Received:	12/7/98
% Moisture:	17		decant	ed: (Y/N)	N	Date Extracted:	12/8/98
Concentrated Ex	tract Volume	e:	500	_(uL)		Date Analyzed:	1/11/99
Injection Volum	e:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup: ((Y/N) _	Y	_	pH:	6.4		
				¢	oncentration		
Number TICs fo	und:	22			(ug/L or u	g/Kg) ug/Kg	

CAS Number	Compound Name	RT	Est. Conc	Q
1.	Unknown Adarandens ATION			14
····2.	Unknown "	n 3.63		JA
3.	Unknown "	// 4.05	1600	14
4.	Unknown "	4.56	2500	J.A
5, 90-12-0	Naphthalene, 1-methyl-	6.58	330	JN
6.	Unk C2 Naphthalene	7.39	320	J
7.	Unk C2 Naphthalene	7.53	380	J
8.	Unknown C11-C22 Aromafri	9.33	320	J
9.	Unk 5-Ring PAH	19.89	2000	J
10.	Unknown CH-CZZ Aresoutre	20.06	980	j
11.	Unk 5-Ring PAH	20.20	2100	J
12.	Unk 5-Ring PAH	20.52	1600	J
13.	Unknown CH-122 America	20.59	460	J
14.	Unknown **	20.78	770	J
15.	Unknown ,/	21.26	990	J
16.	Unknown , ,	21.99	820	J
17.	Unk 5-Ring PAH // //	22.59	1100	J
18.	Unk 5-Ring PAH //	22.67	1300	1
19.	Unk 6-Ring PAH ,, ,	23.03	480	J
20.	Unknown ?	24.50	320	J
21.	3,4:8,9-Dibenzpyrene C11-C22	124.62	£_ 980	J
22.	[3,4:9,10]Dibenzpyrene 4	24.75		Ţ
23,				
24.	···	ĺ		
25.	· · · · · · · · · · · · · · · · · · ·			
26.				_
27.				
28.		T	-	
29.				
30.		i		

(g/mL G

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

GGSS4DL Lab Name: DE DNREC:DIV OF WATER RES Contract: DNREC:DAWM

Lab Code: DE023 Case No.: SAS No.: SDG No.: #6960

Matrix: (soil/water) SOIL Lab Sample ID: 9805600

C00151 Lab File ID: P2141.D

Level: (low/med) LOW Date Received: 12/7/98

% Moisture: 17 decanted: (Y/N): Date Extracted: 12/8/98 N

Concentrated Extract Volume: 500 (uL) Date Analyzed: 1/12/99 Injection Volume: 2.0 (uL) Dilution Factor: 5.0

GPC Cleanup: (Y/N) Y pH: 6.36

30.2

Sample wt/vol:

Concentration Units:

		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
111-44-4	bis(2-Chloroethyl)ether	2000	UD
541-73-1	1,3-Dichlorobenzene	2000	UD
106-46-7	1,4-Dichlorobenzene	2000	UD
95-50-l	1,2-Dichlorobenzene	2000	סט
108-60-1	2,2'-oxybis(1-Chloropropane)	2000	ŪŪ
67-72-1	Hexachloroethane	2000	UD
621-64-7	N-Nitroso-di-n-propylamine	2000	συ
98-95-3	Nitrobenzene	2000	UD
78-59-1	Isophorone	2000	UD
111-91-1	bis(2-Chloroethoxy)methane	2000	UD
120-82-1	1,2,4-Trichlorobenzene	2000	UD
91-20-3	Naphthalene	1200	1D
106-47-8	4-Chloroaniline	2000	QŲ
87-68-3	Hexachlorobutadiene	2000	UD
91-57-6	2-Methylnaphthalene	830	JD
77-47-4	Hexachlorocyclopentadiene	2000	UD
91-58-7	2-Chloronaphthalene	2000	UD
88-74-4	2-Nitroaniline	2000	UD
208-96-8	Acenaphthylene	380	ЛD
131-11-3	Dimethylphthalate	2000	ŲD
606-20-2	2,6-Dinitrotoluene	2000	UD
99-09-2	3-Nitroaniline	2000	UD
83-32-9	Acenaphthene	1900	1D
132-64-9	Dibenzofuran	1200	JD
121-14-2	2,4-Dinitrotoluene	2000	UD
86-73-7	Fluorene	1600	JD
84-66-2	Diethylphthalate	2000	UD
7005-72-3	4-Chlorophenyl-phenylether	2000	UD
100-01-6	4-Nitroaniline	2000	άÜ
86-30-6	N-Nitrosodiphenylamine (1)	2000	ŲD
101-55-3	4-Bromophenyl-phenylether	2000	UD
118-74-1	Hexachlorobenzene	2000	UD
85-01-8	Phenanthrene	8200	D

1C EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET GGSS4DL Lab Name: DE DNREC:DIV OF WATER RES Contract: DNREC:DAWM Lab Code: DE023 Case No.: \$AS No.: SDG No.: #6960 <u>0001</u>52 Lab Sample ID: 9805600 Matrix: (soil/water) SOIL Sample wt/vol: 30.2 (g/mL G Lab File ID: P2141.D LOW Level: (low/med) Date Received: 12/7/98 N Date Extracted: 12/8/98 % Moisture: 17 decanted: (Y/N): Concentrated Extract Volume: 500 (uL) Date Analyzed: 1/12/99 Injection Volume: 2.0 (uL)Dilution Factor: 5.0 pH: 6.36 GPC Cleanup: (Y/N) Υ

Conce	öbrätiön	Units:
(ma/I	or na/K	e)

CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
120-12-7	Anthracene	2600	ם
86-74-8	Carbazole	1700	1D
84-74-2	Di-n-butylphthalate	2000	UD
206-44-0	Fluoranthene	9100	D
129-00-0	Pyrene	8700	D
85-68-7	Butylbenzylphthalate	2000	UD
56-55-3	Benzo(a)Anthracene	5500	D
91-94-1	3,3'-Dichlorobenzidine	2000	ŪŪ
218-01-9	Chrysene	6100	D
117-81-7	bis(2-Ethylhexyl)phthalate	190	1D
117-84-0	Di-n-octylphthalate	2000	ÜD
205-99-2	Benzo(b)fluoranthene	5400	D
207-08-9	Benzo(k)fluoranthene	3500	Ω)
50-32-8	Benzo(a)pyrene	4900	D
193-39-5	Indeno(1,2,3-cd)pyrene	3600	D
53-70-3	Dibenz(a,h)anthracene	1400	ıD
191-24-2	Benzo(g,h,i)perylene	3000	D

Form I SV-2

(1) - Cannot be separated from Diphenylamine

3/90

1B EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET **GGTP10D** Lab Name: DE DNREC:DIV OF WATER RES Contract: DNREC:DAWM Lab Code: DE023 Case No.: SDG No.: #6960 SAS No.: Matrix: (soil/water) SOIL-Lab Sample ID: 9805597 000195 Sample wt/vol: 30.2 (g/mL G Lab File ID: P2132.D

Date Received: 12/7/98 % Moisture: 16 decanted: (Y/N): Ν Date Extracted: 12/8/98 Concentrated Extract Volume: 500 (uL) Date Analyzed: 1/11/99

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 7.58

LOW

Level: (low/med)

Concentration Units:

	•	Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/	/Kg Q
111-44-4	bis(2-Chloroethyl)ether	390	Ü
541-73-1	1,3-Dichlorobenzene	390	Ū
106-46-7	1,4-Dichlorobenzene	390	Ų
95-50-1	1,2-Dichlorobenzene	390	Ü
108-60-L	2,2'-oxybis(1-Chloropropane)	390	Ų
67-72-1	Hexachloroethane	390	Ü
621-64-7	N-Nitroso-di-n-propylamine	390	U
98-95-3	Nitrobenzene	390	U
78-59-1	Isophorone	390	U
111-91-1	bis(2-Chloroethoxy)methane	390	U
120-82-1	1,2,4-Trichlorobenzene	390	U
91-20-3	Naphthalene	140	J
106-47-8	4-Chloroaniline	390	U
87-68-3	Hexachlorobutadiene	390	U
91-57-6	2-Methylnaphthalene	95	j
77-47-4	Hexachlorocyclopentadiene	390	U
91-58-7	2-Chloronaphthalene	390	U
88-74-4	2-Nitroaniline	390	ប
208-96-8	Acenaphthylene	180	j
131-11-3	Dimethy lphthalate	390	U
606-20-2	2,6-Dinitrotoluene	390	U
99-09-2	3-Nitroaniline	390	U
33-32-9	Acenaphthene	300	J
132-64-9	Dibenzofuran	260	J
121-14-2	2,4-Dinitrotoluene	390	. <u>U</u>
36-73-7	Fluorene	430	·
84-66-2	Diethylphthalate	390	U
7005-72-3	4-Chlorophenyl-phenylether	390	Ū
100-01-6	4-Nitroaniline	390	Ü
36-30-6	N-Nitrosodiphenylamine (1)	390	U
101-55-3	4-Bromophenyl-phenylether	390	Ü
118-74-1	Hexachlorobenzene	390	U
85-01-8	Phenanthrene	2600	

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CCTPI	ΠD

Lab Name:	DE DNRE	C:DIV OF V	VATER RES	Contract;	DNREC:DAWM	GG	TP10D	
Lab Code:	DE023	_ Ca	se No.:	SAS No.:		SDG No.:	#6960	_
Matrix: (se	oil/water)	SOIL	_		Lab Sample ID:	9805597	- 000	196
Sample wt/	vol:	30.2	(g/mL G	_	Lab File ID:	P2132.D	_	
Level: (low/med)	LOW	_		Date Received:	12/7/98	_	
% Moistun	e: <u>16</u>	_	decanted: (Y/N	i): <u> </u>	Date Extracted:	12/8/98	_	
Concentrat	ed Extract Vo	lume:	_500_(uL)		Date Analyzed:	1/11/99	_	
Injection V	olume:	2.0	_(uL)		Dilution Factor:	0.1	_	
GPC Clean	up: (Y/N)	Y		pH:7.58				
				Concentration	n Units:			
C	AS No.	Compound		(ug/L or ug/:	Kg) ug/Kg	Q		
ī	20-12-7	Anthracene	 !		740		٦	
—	6-74-8	Carbazole		·	410		1	
_	4-74-2	Di-n-butylj	phthalate		390	U	1	
<u> </u>	06-44-0	Fluoranthe			2800		1.	
ī	29-00-0	Pyrene			3400	X]µ(
8	5-68-7	Butylberizy	lphthalate	1	390	Ü	T \	
5	6-55-3	Benzo(a)Ai	nthracene		2000		7 '	
9	1-94-1	3,3'-Dichle	orobenzidine	1	390	U	1	
2	18-01-9	Chrysene			2000		7	
ī	17-81-7	bis(2-Ethyl	hexyl)phthalate		32	JB	7.	
ī	17-84-0	Di-n-octylp	ohthalate		390	U		
2	05-99-2	Benzo(b)fli	uoranthene		1800			
2	07-08-9	Benzo(k)fli	uoranthene		640			
5	0-32-8	Benzo(a)py	rene		1400			
1	93-39-5	Indeno(1,2	,3-cd)pyrene		1200			
5	3-70-3	Dibenz(a,h)anthracene		450			
1	91-24-2	Benzo(g,h,	i)perylene		1000		_	
-							-	
L						<u> </u>	_	
L		·						
L						<u></u>	_	
L		_,				 	4	
L						<u> </u>	4	
L							4	
L					· · · · · · · · · · · · · · · · · · ·		- ··	
							4	
	<u> </u>					<u> </u>	4	
				L		I		

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGTP10D

Lab Name: DE DNR	EC:DIV OF W	ATER RE	<u>s</u>	Contract:	DNREC:DAWM	
Lab Code: DE023		Case No.	.:	SAS No.:		OO0197
Matrix: (soil/water)	SOIL	_			Lab Sample ID:	9805597
Sample wt/vol:	30.2	_(g/mL)	<u>G</u>		Lab File ID	P2132.D
Level: (low/med)	LOW	_			Date Received:	12/7/98
% Moisture: 16		đecan	ted: (Y/N)	N	Date Extracted:	12/8/98
Concentrated Extract \	/olume:	500	(uL)		Date Analyzed:	1/11/99
Injection Volume:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup: (Y/N)	Y		рН:	7.6	_	
Number TICs found:	22		c	oncentration		

CAS Number	Compound Name	RT	Est. Conc	Q
1.	Unknown Alkane	1.99	480	J
2.	Unknown C3 Benzene	3.20	380	Ţ
3.	Unknown Aldo Condenser 1000	1334	± 1400	J.A
4.	Unknown * *	3.60		I A
5.	Unknown " "	3.70-	340	J.A
6.	Unknown - /	4.04	1700	J
7.	Unknown ,, ,,	4.57	3700	1
8.	Unknown a	4.94	250	J
9.	Unk C1 3-Ring PAH CH-C2 2	125,16	330	Ē
10.	Unk S-Ring PAH 17	19.72	, 620	נ
11.	Unknown C11-C22 Acometre	19.94	210	J .
12.	Unk 5-Ring PAH " "	20.05	850	j
13.	Unknown Curred " "	20.61	260	3
14.	Uaknowa 🕡 🗸 🚜	21.11	200	J
15.	Unknown Alkane	21.45	280	J
16.	Unk S-Ring PAH C/1-C2> A-P	-,2%,05	530	J
17.	Unk 5-Ring PAH //	22.43	390	J
_18.	Unk 5-Ring PAH 🕠 🕡	22.49	400	J
19.	Unk 6-Ring PAH 💀 🚜	22.86	320	J
20.	1,2:4,5-Dibenzpyrene • "	24.49	850	J
21.	1,2:3,4-Dibenzpyrene ' "	24.63	510	J
22.	Unknown Alkane / " "	24.72	450	J
23.				
24,				
25.				
26.				
27.				
28.				
29.				
30.				

1B REMIVOLATII E ORGANICS ANALYSIS DATA SHE

EPA SAMPLE NO.

		SEMIVOLATILE ORGAN		DATA SHEET		10DDL
Lab Name	E DE DNRE	C:DIV OF WATER RES	Contract: <u>DNI</u>	REC:DAWM		
Lab Code	DE023	Case No.:	SAS No.:		SDG No.:	#6960
Matrix: (soil/water)	SOIL	L	ab Sample ID;	9805597	000232
Sample w	t/vol:	30.2 (g/mL G		Lab File ID:	P2143.D	000202
Level:	(low/med)	LOW	Γ	Date Received:	12/7/98	
% Moistu	re: 16	decanted: (Y/N):	N D	ate Extracted:	12/8/98	
Concentra	ned Extract Vol	_		Date Analyzed:	1/12/99	
Injection	Volume:	2.0 (uL)	D	ilution Factor:	2.0	
GPC Clea	mup: (Y/N)	<u> </u>	7.58			
			 Concentration Unit	38:		
1	CAS No.	Compound	(ug/L or ug/Kg)	ug/Kg	Q	
1	111-44-4	bis(2-Chloroethyl)ether	7	790	UD	
	541-73-I	1,3-Dichlorobenzene	7	790	UD	
	106-46-7	1,4-Dichlorobenzene	7	790	UD	
}	95-50-1	1.2-Dichlorobenzene	7	790	UD	
1	108-60-1	2,2'-oxybis(1-Chloropropane)	1 ,	790	UD	
	67-72-1	Hexachloroethane		790	UD	
	621-64-7	N-Nitroso-di-n-propylamine	-	790	ŲD	
	98-95-3	Nitrobenzene		790	UD	
	78-59-1	Isophorone	· · · · · · · · · · · · · · · · · · ·	790	UD	
	111-91-1	bis(2-Chloroethoxy)methane		790	UD	
	120-82-1	1,2,4-Trichlorobenzene		790	UD	
	91-20-3	Naphthalene		130	JD	
	106-47-8	4-Chloroaniline		790	UD	
	87-68-3	Hexachlorobutadiene		790	UD	
	91-57-6	2-Methylnaphthalene	<u> </u>	92	JD JD	
	77-47-4	Hexachlorocyclopentadiene	}	790	UD	
	91-58-7	2-Chloronaphthalene		790	UD	
	88-74-4	2-Nitroaniline		790	UD	
	208-96-8	Acenaphthylene	-}	190	JD	ĺ
	131-11-3	Dimethylphthalate	_	790	UD	
	606-20-2	2,6-Dinitrotoluene	-1	790	UD	
	99-09-2	3-Nitroaniline		790	UD	
	83-32-9	Acenaphthene		310	1D	
	63-32- у 132-64-9	Dibenzofuran		270	JD	
	121-14-2			790	שני	
	86-73-7	2,4-Dinitrotoluene Fluorene		130	ID ID	
	84-66-2	Diethylphthalate		790	UD	
	7005-72-3	4-Chlorophenyl-phenylether		790	UD	·
	100-01-6	4-Nitroaniline	1	790	UD	1

790

790

790

2400

N-Nitrosodiphenylamine (1)

4-Bromophenyl-phenylether

Hexachlorobenzene

Phenanthrene

86-30-6

101-55-3

118-74-1

85-01-8

UD

ŲD

UD

D

IB
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	DE DNREC	:DIV OF W	VATER	RES	(Contract:	DNREC:DAWM		11F2D	
Lab Code:	DE023	C ₂	se No.:		. 5	SAS No.:		SDG No.:	#6960	
Matrix: (soil/	water)	SOIL	_				Lab Şample ID:	9805589		
Sample wt/vol	:	30.1	_(g/mL	G			Lab File ID	: P2131.D	- 60026 -	63
Level: (low	/med)	LOW	_				Date Received:	12/7/98	_	
% Moisture:	17		deca	nted: (Y/N)	: _	N _	Date Extracted:	12/8/98	-	
Concentrated I	Extract Volu	ıme:	500	_(uL)			Date Analyzed:	1/11/99	_	
Injection Volu	me:	2.0	(uL)				Dilution Factor	:1.0	_	
GPC Cleanup:	(Y/N)	Y	_	pI	H: _	5.65				
CAS	No.	Compound				ncentration g/L or ug/K		0		

CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	_ Q
111-44-4	bis(2-Chloroethyl)ether	400	U
541-73-1	1,3-Dichlorobenzene	400	υ
106-46-7	1,4-Dichlorobenzene	400	U
95-50-1	1,2-Dichlorobenzene	400	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	400	U
67-72-1	Hexachloroethane	400	υ
621-64-7	N-Nitroso-di-a-propylamine	400	U
98-95-3	Nitrobenzene	400	Ü
78-59-1	Isophorone	400	Ü
111-91-1	bis(2-Chloroethoxy)methane	400	U
120-82-1	1,2,4-Trichlorobenzene	400	Ü
91-20-3	Naphthalene	400	U }
106-47-8	4-Chloroaniline	400	υ
87-68-3	Hexachlorobutadiene	400	Ų
91-57-6	2-Methylnaphthalene	400	U
77-47-4	Hexachlorocyclopentadiene	400	U
91-58-7	2-Chloronaphthalene	· 400	U
88-74-4	2-Nitroaniline	400	(U
208-96-8	Acenaphthylene	400	U
131-11-3	Dimethylphthalate	400	U
606-20-2	2,6-Dinitrotolucne	400	Ŭ
99-09-2	3-Nitroaniline	400	Ü
83-32-9	Acenaphthene	400	U
132-64-9	Dibenzofuran	400	U
121-14-2	2,4-Dinitrotoluene	400	U
86-73-7	Fluorene	400	Ų
84-66-2	Diethylphthalate	400	U
7005-72-3	4-Chlorophenyl-phenylether	400	Ū
100-01-6	4-Nitroaniline	400	U
86-30-6	N-Nitrosodiphenylamine (1)	400	U
101-55-3	4-Bromophenyl-phenylether	400	Ü
118-74-1	Hexachlorobenzene	400	Ŭ
85-01-8	Phenanthrene	400	Ū

IC SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name	e: DE DNRE	EC:DIV OF W	ATER RES	Contract:	DNREC:DAWM	ec.	TP2D
Lab Code			e No.:			SDG No.:	#6960
Matrix: ((soil/water)	– soil			Lab Sample ID:	9805589	000270
Sample w	t/vol:	30.1	(g/mL G		Lab File ID	P2131.D	•
Level:	(low/med)	LOW			Date Received:	12/7/98	•
% Moistu	ire: 17		decanted: (Y/N):	N	Date Extracted:	12/8/98	•
Concentra	ated Extract Vo	olume:	500(uL)		Date Analyzed:	1/11/99	
Injection	Volume:	2.0	(uL)		Dilution Factor:	1.0	
GPC Clea	anup: (Y/N)	Y	pН	: 5.65			
				Concentratio	n Units:		
	CAS No.	Compound		(ug/L or ug/	Kg) ug/Kg	Q	
	120-12-7	Anthracene			400	U	
	86-74-8	Carbazole			400	U]
	84-74-2	Di-n-buryip	hthalate		400	U]
	206-44-0	Fluoranthen	ŧ		400	U	
	129-00-0	Pyrene			400	U	
	85-68-7	Butylbenzyl	phthalate		400	U	<u>[</u>
	56-55-3	Benzo(a)An	thracene		400	U	j
	91-94-1	3,3'-Dichlo	robenzidine	·	400	U	
	218-01-9	Chrysene	<u> </u>		400	Ū	
	117-81-7	bis(2-Ethyll	exyl)phthalate		26	IB _]
	117-84-0	Di-n-octylpl	hthalate		400	บ	
	205-99-2	Benzo(b)flu			400	U _]
	207-08-9	Benzo(k)flu	oranthene		400	U	
	50-32-8	Benzo(a)pyt	еле		400	. U	
	193-39-5	Indeno(1,2,	3-cd)pyrene		400		
	53-70-3	Dibenz(a,h)	anthracene		400	ļυ	
	191-24-2	Benzo(g,h,i)perylene		400	υ -	
						<u> </u>	
	<u> </u>		······	 		-	ļ
							1
					····	 	†
						 	1
	ļ		 ,			 	1
				+		+	1
					-	- 	1
				+		 	1
	<u> </u>	· · ·			· · · · · · · · · · · · · · · · · · ·	 	1
	<u> </u>			<u> </u>			4

(1) - Cannot be separated from Diphenylamine

Vial: 10

Data File : C:\HPCHEM\1\DATA\DA40111.CIM\P2131.D

Acq On : 11 Jan 99 5:54 pm

Operator: CIM Sample : GGTP2D Inst : 5972-DEL4 Multiplr: 1.00

: ESN:98055890 Misc

Method : K:\METHODS\I40111B.M

Title : CLP BNA Calibra Library : L:\NBS75K.L	ion			
R.T. Conc A	cea Relat	ive to 1	ISTD	R.T.
24.71 3.17 ng/μl 34	3169 Perylen	e-d12		20.23
Hit# of 20 Tentat	ive ID	Ref#	CAS#	Qual
1 2-Oxazolidinone, 3,4-dimer 2 Propanamide, 2,2-dimethyl	hyl-5-phe N-(4-meth	20473 (032461-37-3 021354-40-5	9 9
3 Propanamide, 2,2-dimethyl	-N-(3-meth <		332597-29-8	9
4 2-Propen-1-amine	K.		000107-11-9	3
5 Azetidine	M	83 (000503-29-7	2
Abundance Scan 2145 (24.709 57	min): P2131.D (-,*)	m/2 57.10	1.00.00%
5000 -	316	ļ	}\	
91 147 191	253 3674n		24.35	25.07
 		1 45	m/z 316.30	37.13%
m/z> 50 100 150 200 2	.50 300 350 40	0 450	,	•
Abundance#20473: 2-0xazolidi 57	none, 3,4-dimet	ny1-5-		 ,,
j			24.35	25.07
1132 191			m/z 40.95	21.29%
0			<u> </u>	
m/z> 50 100 150 200 2 Abundance#20505: Propanamide	2 2-dimethyl-	U 45U N- (4-m		
57	, z,z dimeenji	44 (-4 III	Land la	
1 107			24.35	25.07
5000 191			m/z 191.05	
132			\bigwedge	
m/z> 50 100 150 200 2	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		/\	
Abundance#20500: Propanamide	. 2.2-dimethyl-	N-(3-m	-	min
- 5 7	, b, a armoun, r	., (2)	24.35	25.07
5000 107			m/z 147.00	9.31%
191			[]	[
0 134	.,,,,		many fr	
m/z> 50 100 150 200 :	50 300 350 40	0 450	24.35	25.07

P2131.D I40111B.M

IF SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

GGTP2D

Lab Name:	DE DNRE	C:DIV OF W	ATER RE	S	Contract:	DNREC:DAWM	000271
Lab Code:	DE023	_	Case No.	÷	SAS No.:		SDG No.: #6960
Mairix: (soil	/water)	SOIL	_			Lab Sample !D:	9805589
Sample wt/vo	pl:	30.1	_(g/mL)	G		Lab File ID	: P2131.D
Level: (lov	w/med)	LOW				Date Received:	12/7/98
% Moisture:	17	_	decant	ted: (Y/N)	N	Date Extracted:	12/8/98
Concentrated	Extract Vo	lume:	500	(uL)		Date Analyzed:	1/11/99
Injection Vol	ume:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup	p: (Y/N)	Y	_	pH:	5.7		
				(Concentration	Units:	
Number TIC	s found:	5			(ug/L or u	g/Kg) ug/Kg	•

CAS Number	Compound Name	RT	Est. Conc	Q
1.	Unknown Alkane	1.98	440	J_
2.	Unknown Cyclo Alkare	2.76	160	J
3.	Unknown Cyclo Alkare Unknown C3 Benzene	3.20	340	J
4.	Unknown Affician don of	3.5%	del 25	J.4
5.	Unknown ?	24.71	130	J
6		T		<u> </u>
7.				- "
8.	<u> </u>			
9.			!	
10.			-	
11.			_	
12.	·			
13.				
14.		1		
15.				
16.				
17.				
18.		<u> </u>		
19.				
20.			:	
21.				
22.			<u>i</u>	
23.				
24.				
25.				
26.				
27.			<u> </u>	
28.				
29.				
30.				

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO

GGTP3S

Lab Name:	DE DNRE	C:DIV OF	WATER RES		Contract:	DNREC:DAWM		
Lab Code:	DE023	_ c	ase No.:		SAS No.:		SDG No.: 4	#6960
Matrix: (soi	il/water)	SOIL	_			Lab Sample ID:	9805590	000280
Sample wt/v	ol:	30.2	_(g/mL <u>G</u> _			Lab File ID;	P2147.D	00000
Level: (lo	w/med)	LOW				Date Received:	12/7/98	
% Moisture:	15	···	decanted:	(Y/N):	<u> </u>	Date Extracted:	12/8/98	
Concentrated	d Extract Vo	lume:	500 (uL)			Date Analyzed:	1/12/99	
Injection Vo	lume:	2.0	_(uL)			Dilution Factor:	1.0	
GPC Cleanu	p: (Y/N)	Y		pH:	7.01			

Concentra	ation.	Units:
COMPENSE	шили	CHILD.

ÇAS No.	Compound	(ug/L or ug/Kg)u	g/Kg Q
111-44-4	bis(2-Chloroethyl)ether	390	Ü
541-73-1	1,3-Dichlorobenzene	390	U
106-46-7	1,4-Dichlorobenzene	390	U
95-50-1	1,2-Dichlorobenzene	390	U
108-60-1	2,2'-oxybis(1-Chloropropane)	390	U
57-72-1	Hexachloroethane	390	υ
521-64-7	N-Nitroso-di-n-propylamine	390	ប
98-95-3	Nitrobenzene	390	U
78-59-1	lsophorone	390	U
111-91-1	bis(2-Chloroethoxy)methane	390	Ü
120-82-1	1,2,4-Trichlorobenzene	390	U
91-20-3	Naphth alene	130	J
106-47-8	4-Chloroaniline	390	Ü
87-68-3	Hexachlorobutadiene	390	U
91-57-6	2-Methylnaphthalene	83	J
77-47-4	Hexachlorocyclopentadiene	390	U
91-58-7	2-Chloronaphthalene	390	U
88-74-4	2-Nitroaniline	390	ט
208-96-8	Acenaphthylene	170	1
131-11-3	Dimethylphthalate	390	U
606-20-2	2,6-Dinitrotoluene	390	ប
99-09-2	3-Nitroaniline	390	บ
83-32-9	Acenaphthene	840	
132-64-9	Dibenzofuran	710	
121-14-2	2,4-Dimitrotoluene	390	U
86-73-7	Fluorene	1200	
84-66-2	Diethylphthalate	390	Ü
7005-72-3	4-Chlorophenyl-phenylether	390	_U
100-01-6	4-Nitroaniline	390	U
86-30-6	N-Nitrosodiphenylamine (1)	390	υ
101-55-3	4-Bromophenyl-phenylether	390	ט
118-74-1	Hexachlorobenzene	390	U
85-01-8	Phenanthrene	11000	E

				10				EPA SAM	PLE NO.
Lab Name:	DE DNRE	SEM C:DIV OF W			NICS ANAL	YSIS DATA SHI			TP3S
Lab Code:	DE023	Ca	se No.: _		SAS No.:	<u> </u>	_	SDG No.:	#6960
Matrix: (soil	/water)	SOIL	_			Lab Sample	Œ:	9805590	000281
Sample wt/vo	ol:	30.2	(g/mL C	3		Lab File	ID:	P2147.D	
Level: (lov	w/med)	LOW	_			Date Receive	ed:	12/7/98	
% Moisture:	15	_	decanti	ed: (Y/N):	N	Date Extract	ed:	12/8/98	
Concentrated	Extract Vol	ume:	_500_(uL)		Date Analyz	æd:	1/12/99	
Injection Vol	ume:	2.0	(uL)			Dilution Fac	tor:	0.1	
GPC Cleanup	: (Y/N)	Y	-	pH:	7.01				
•		•		(Concentration	Units:			
CA:	S No.	Compound		+	(ug/L or ug/l	Kg) ug/Kg		Q	

	•	Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
120-12-7	Anthracene	4000	Е
86-74-8	· Carbazole	1400	
84-74-2	Di-n-butylphthalate	390	U
206-44-0	Fluoranthene	22000	E
129-00-0	Pyrene	28000	Ę
85-68-7	Butylbenzylphthalate	57	J
56-55-3	Benzo(a)Anthracene	22000	Е
91-94-1	3,3'-Dichlorobenzidine	390	Ü
218-01-9	Chrysene	11000	Е
117-81-7	bis(2-Ethylhexyl)phthalate	62	JB
117-84-0	Di-n-ocrylphthalate	390	U
205-99-2	Benzo(b)fluoranthene	14000	E
207-08-9	Benzo(k)fluoranthene	6300	E
50-32-8	Benzo(a)pyrene	12000	Е
193-39-5	Indeno(1,2,3-cd)pyrene	7000	E
53-70-3	Dibenz(a,h)anthracene	3600	Ē
191-24-2	Benzo(g,h,i)perylene	5100	Е
	··		
			
···			
<u> </u>	•		

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGTP3S

Lab Name:	DE DNRE	C:DIV OF W	ATER RE	S	Contract:	DNREC:DAWM	000282
Lab Code:	DE023	_	Case No.	.:	SAS No.:		SDG No.: #6960
Matrix: (soil	l/water)	SOIL	_			Lab Sample ID:	9805590
Sample wt/vo	o1:	30.2	_(g/mL)	<u>G</u>		Lab File ID	: P2147.D
Level: (lov	w/med)	LOW	<u> </u>			Date Received:	12/7/98
% Moisture:	15	_	decan	ted: (Y/N)	N	Date Extracted:	12/8/98
Concentrated	Extract Vol	ume:	500	(uL)		Date Analyzed:	1/12/99
Injection Vol	lume:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup	p: (Y/N)	<u>Y</u>		pH:	7.0		
Number TIC	s found:	22		C	Concentration (bg/L. or a		•

CAS Number	Compound Name	RT E	st. Conc	Q
1.	Unknown Alkane	1.87	230	1
2.	Unknown C3 Benzene	3.15	290	1
3.	Unknown Albertaled Cas Ation	3/23	24/100	I A
4,	Unknown "	3.56 /	- 1700	1,4
5.	Unknown #	3.65	250	J A
6.	Unknown 4	4.01	ч1600	J *
7.	Unknown 7	4.53	<i>▲ 5</i> 300 →] ~
8 .	Unknown	4.93	290	J
9. 644-08-6	1,1'-Biphenyl, 4-methyl- 🖙 🖘	9/28 v	A250	JN
10. 7320-53-8	Dibenzofuran, 4-methyl- Car-cz	9.47	7 320	JN
11.	Unk C1 4-Ring PAH //	15.19	220	J
12.	Unk 5-Ring PAH ◀	19.92	~ 790	J
13.	Unknown //	20.07	m 360	J
14.	Unk 5-Ring PAH #	20.19	9 8 20	J
15.	Unk 5-Ring PAH 😽	20.57	-780	J
16.	Unknown *	20.78	230	J
17.	Unknown ,	21.28	~ 460	J
18.	Unk 5-Ring PAH //	22.63	<i>₩</i> 370	J
19.	1,2:7,8-Dibenzphenanthrene -	22.70	w 720	J
20.	Unk 6-Ring PAH *	22.85	n 600	1
21.	Unknown *	23.64	z 240	J
22.	1,2:3,4-Dibenzpyrene	24.61	№ 780	1
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

1B

EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET GGTP3SDL Lab Name: DE DNREC:DIV OF WATER RES Contract: DNREC:DAWM Lab Code: DE023 Case No.: SAS No.: SDG No.: #6960 Matrix: (soil/water) SOIL Lab Sample ID: 9805590 000323Sample wt/vol: 30.2 (g/mL G Lab File ID: P2140.D Level: (low/med) LOW Date Received: 12/7/98 decanted: (Y/N): N % Moisture: 15 Date Extracted: 12/8/98 Concentrated Extract Volume: 500 (uL) Date Analyzed: 1/12/99 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: (Y/N) Y pH: 7.01 Concentration Units: CAS No. (ug/L or ug/Kg) Q Compound ng/Kg 111-44-4 3900 bis(2-Chloroethyl)ether UD 541-73-1 3900 ÜD 1,3-Dichlorobenzene QU 106-46-7 3900 1,4-Dichlorobenzene UD 95-50-1 1,2-Dichlorobenzene 3900 3900 UD 108-60-1 2,2'-oxybis(1-Chloropropane) 67-72-1 3900 ŲD Hexachloroethane UD 621-64-7 N-Nitroso-di-n-propylamine 3900 Nitrobenzene 98-95-3 3900 ÚD 78-59-1 Isophorone 3900 UD 111-91-1 bis(2-Chloroethoxy)methane 3900 UD 120-82-1 1,2,4-Trichlorobenzene 3900 UD 91-20-3 Naphthalene 120 JD 106-47-8 4-Chloroaniline 3900 ŲD 87-68-3 Hexachlorobutadiene 3900 UD 91-57-6 2-Methylnaphthalene 82 D 77-47-4 Hexachlorocyclopentadiene 3900 ŲD 91-58-7 2-Chloronaphthalene 3900 UD 88-74-4 2-Nitroaniline 3900 UD 208-96-8 Acenaphthylene 140 JD 131-11-3 3900 UD Dimethylphthalate 606-20-2 2,6-Dinitrotoluene 3900 UD QU 99-09-2 3-Nitroaniline 3900 83-32-9 JD Acenaphthene 860 132-64-9 Dibenzofuran 710 JD 2,4-Dinitrotoluene 3900 UD 121-14-2 1200 86-73-7 Fluorene JD 84-66-2 Diethylphthalate 3900 UD 7005-72-3 UD 4-Chlorophenyi-phenylether 3900 3900 UD 100-01-6 4-Nitroaniline 3900 N-Nitrosodiphenylamine (1) UD 86-30-6

3900

3900

10000

4-Bromophenyl-phenylether

Hexachlorobenzene

Phenanthrene

101-55-3

118-74-1

85-01-8

UĎ

UD

 $\overline{\mathbf{D}}$

1C EPA SAMPLE NO.

SEMIYOLATILE ORGA	INICS ANAL	A 212 DATA SHEET	GGTP3SDL
DIV OF WATER RES	Contract:	DNREC:DAWM	

						JOUL	
Lab Nam	e: DE DNRE	C:DIV OF WATER RES	Contract:	DNREC:DAWM	L		
Lab Code	E: <u>DE023</u>	Case No.:	SAS No.:		SDG No.: 9	7 6960	
Matrix:	(soil/water)	SOIL		Lab Sample 1D:	9805590	0003	24
Sample w	/τ/vol:		_	Lab File ID:			_
Level:	(low/med)	LOW		Date Received:	12/7/98		
% Moistr	urė:15	decanted: (Y/N)): <u>N</u>	Date Extracted:	12/8/98		
Concentr	ated Extract Vo	dume:500(eL)		Date Analyzed:	1/12/99		
Injection	Volume:	(uL)		Dilution Factor:	10.0		
GPC Cle	anup: (Y/N)		H: 7.01				
			Concentration	n Units:			
	CAS No.	Compound	(ug/L or ug/l	Kg) <u>ug/Kg</u>	Q		
	120-12-7	Anthracene		3700	ъ		
	86-74-8	Carbazole		1000)D		
	84-74-2	Di-n-butylphthalate		3900	UD		
	206-44-0	Fluoranthene		23000	D		
	129-00-0	Pyrene		21000	D		
	85-68-7	Butylbenzylphthalate		3900	UD		
	56-55-3	Benzo(a) Anthracene		14000	D		
	91-94-1	3,3'-Dichlorobenzidine		3900	UD		
	218-01-9	Chrysene		14000	D		
	117-81-7	bis(2-Ethylhexyl)phthalate		3900	UD		
	117-84-0	Di-n-octylphthalate		3900	ตับ		
	205-99-2	Benzo(b)fluoranthene		14000	D_	•	
	207-08-9	Benzo(k)fluoranthene		8000	D		
	50-32-8	Benzo(a)pyrene		11000	. D		
	193-39-5	Indeno(1,2,3-ed)pyrene		8900	. Ď		
	53-70-3	Dibenz(a,h)anthracene		3400	JD		
	191-24-2	Benzo(g,h,i)perylene		7300	<u> D</u>		
					1		
					<u> </u>		
				· • • • • • • • • • • • • • • • • • • •	<u> </u>		
	<u> </u>				<u> </u>		
	ļ				<u> </u>		
							
	1		1				

(1) - Cannot be separated from Diphenylamine

IB SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: DE DNREG		EC:DIV OF WATER RES				DNREC:DAWM	GGTP5S		
Lab Code:	DE023	Ca	se No.:		SAS No.:		SDG No.:	#6960	_
Matrix: (so:	il/water)	SOIL	-			Lab Sample ID:	9805593	000	360
Sample wt/v	ol:	30.2	(g/mL <u>G</u>			Lab File ID	: <u>P2136.D</u>	-	
Level: (lo	w/med)	LOW	_			Date Received:	12/7/98		
% Moisture	: 16		decante	d: (Y/N);	<u> </u>	Date Extracted:	12/8/98	-	
Concentrate	d Extract Vol	ume:	_500_(u	L)		Date Analyzed:	1/11/99	_	
Injection Vo	lume:	2.0	(uL)			Dilution Factor:	1.0	_	
GPC Cleam	p: (Y/N)	Y	_	pH:	5.99				
				(Concentration	Units:			
CA	AS No.	Compound			(ug/L or ug/K	g) <u>ug/Kg</u>	Q		
11	1-44-4	bis(2-Chlor	oethyl)ethe	er .		390	U		
54	1_73_1	1.3-Dichler	ohenzene			300	11	1	

		Concentration Onus;	
CAS No.	Compound	(ug/L or ug/Kg) ug/K	g Q
111-44-4	bis(2-Chloroethyl)ether	390	U
541-73-1	1,3-Dichlorobenzene	390	ប
106-46-7	1,4-Dichlorobenzene	390	U
95-50-1	1,2-Dichlorobenzene	390	υ
108-60-1	2,2'-oxybis(1-Chloropropane)	390	U
67-72-1	Hexachloroethane	390	υ
621-64-7	N-Nitroso-di-n-propylamine	390	U
98-95-3	Nitrobenzene	390	บ
78-59-1	Isophorone	390	Ü
111-91-1	bis(2-Chloroethoxy)methane	390	Ŭ
120-82-1	1,2,4-Trichlorobenzene	390	Ų
91-20-3	Naphthalene	290	Ū
106-47-8	4-Chloroaniline	390	U
87-68-3	Hexachlorobutadiene	390	U
91-57-6	2-Methylnaphthalene	390	U
77-47-4	Hexachlorocyclopentadiene	390	Ü
91-58-7	2-Chloronaphthalene	390	Ü
38-74-4	2-Nitroaniline	390	U
208-96-8	Acenaphthylene	51	J
131-11-3	Dimethylphthalate	390	υ
606-20-2	2,6-Dinitrotoluene	390	υ
99-09-2	3-Nitroaniline	390	U
83-32-9	Acenaphthene	390	Ü
132-64-9	Dibenzofuran	390	U
121-14-2	2,4-Dinitrotoluene	390	U
86-73-7	Fluorene	20	1
84-66-2	Diethylphthalate	390	Ū
7005-72-3	4-Chlorophenyl-phenylether	390	υ
100-01-6	4-Nitroaniline	390	U
86-30-6	N-Nitrosodiphenylamine (1)	390	U
101-55-3	4-Bromophenyl-phenylether	390	U
118-74-1	Hexachlorobenzene	390	Ŭ
85-01-8	Phenanthrene	290	1

iC					E NO.
Lab Name: DE DNREC	SEMIVOLATILE ORGA	NICS ANAL Contract:	YSIS DATA SHEET DNREC:DAWM	GGTP	258
Lab Code: DE023	Case No.:	SAS No.:		SDG No.: #6	960
Matrix: (soil/water)	SOIL		Lab Sample (D:	9805593	000361
Sample wt/vol:	30.2 (g/mL G		Lab File ID:	P2136.D	000001
Level: (low/med)	LOW		Date Received:	12/7/98	
% Moisture: 16	decanted: (Y/N):	<u>N</u>	Date Extracted:	12/8/98	
Concentrated Extract Volume	ime: <u>500</u> (uL)		Date Analyzed:	1/11/99	
Injection Volume:	(uL)		Dilution Factor:	1.0	
GPC Cleanup: (Y/N)		: <u>5.99</u>			

<u>.</u> Q
J
J
U
U
Ü
JB
Ū
1
J
1

(1) - Cannot be separated from Diphenylamine

Library Search Compound Report

000394

Vial: 15

Data File : c:\hpchem\1\data\da40111.cim\p2136.d Acq On : 11 Jan 99 8:36 pm

Operator: CIM Sample : GGTP5S Inst : 5972~DEL4 Multiplr: 1.00

: ESN:98055930 Misc

: K:\METHODS\I40111B.M : CLP BNA Calibration Method Title

Title Library		Calibration K.L				
Ŕ.T.	Conc	Area	Relati	ve to	ISTD	R.T.
22.71	3.15 ng/µl	371329	Perylene	∍-d12		20.27
Hit# of	20	Tentative ID		Ref#	CAS#	Qual
		phthalene, 1a,2			000489-29-2	43
		lene, 1a,2,3,4,			000489-40-7	· 30 27
3 3H-1,2	Diculoie-3	thione, 5-tert-	Du V		013120-76-8	
4 Naphtr	naiene, 1.2.4	la,5,8,8a-hexahy	ar '		005951-61-1	27
5 Naphti	laiene, 1,2,	3,5,6,7,8,8a-oct	an	69888	004630-07-3	20
Abundançe 5000	↓ ÷ ↓ 95	(22.711 min): P. 189 175 278	2136.D (m/z 189.10 22.35	23.07
m/z>	100	200 300	400		m/z 177.10	89.214
5000 m/z>	1 105 1 41 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cyclopropa[a]nag 6189	400	 , , ,	22.35 m/z 204.10	23.07 73.71%
Abundance		Cycloprop[e]azul	lene, la	,2,3,4	٦ /۱.	_
5000	41 105	61 204			22.35 m/z 95.00	23.07 55.60%
m/z>	100	200 300	400			
		1,2-Dithiole-3-		5-tert	┨ ──┌ ─── ───	
5000	41 115	189 - -			22.35 m/z 81.00	23.07 46.21%

100

m/z-->

400

300

200

22.35

23.07

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGTP5S

Lab Name: DE DN	REC:DIV OF W	ATER RE	<u>s</u> _	Contract:	DNREC:DAWM	000362
Lab Code: DE023		Çase No.	:	SAS No.;		SDG No.: #6960
Matrix: (soil/water)	SOIL	_			Lab Sample ID;	9805593
Sample wt/vol:	30.2	_(g/mL)	<u>G</u>		Lab File ID:	P2136.D
Level: (low/med)	LOW	_			Date Received:	12/7/98
% Moisture: 16		decan	ted: (Y/N)	N	Date Extracted:	12/8/98
Concentrated Extract	Volume:	500	(uL)		Date Analyzed:	1/11/99
Injection Volume:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup: (Y/N)	YY	_	pH:	6.0	_	
			c	oncentration	n Units:	
Number TICs found:	21			(ug/L or a	ig/Kg) ug/Kg	

CAS Number	Compound Name	RT Est. Conc	Q
1,	Unknown Aikane	1.97 380	J
2.	Unknown C3 Benzene	3.20 290	J
3,	Unknown Alterendens 47102	1900 July 1900	14
4.	Unknown //	3.59 / 1200	14
5.	Unknown //	3.88 // 130	J.A
6.	Unknown "	4.03 📜 1300	J.4
7.	Unknown 🐙	4.23 / 170	J "
8.	Unknown "	4.47 🔳 270	J a
9.	Unknown "	4.56 🛪 3300	14
10.	Unknown 🗾	4.94 4 330	J.A
11. 57-10-3	Hexadecanoic acid	12.71 460	JN
12. 57-11-4	Octadecanoic acid	14.53 250	Лľ
13.	Unk C1 3-Ring PAH	15.13 260	J
14.	Unknown CII-CZZ Armati	190 6.64اسے	ıı
15.	Unknown * "	16.74 140	J
16.	Unk C1 4-Ring PAH / //	18.09 120	J
17.	Unk 5-Ring PAH # #	19.71 220	J
18.	Unk 5-Ring PAH # //	20.03 400	J
1 9 .	Unknown Alkane	21.45 180	J
20.	Unk 6-Ring PAH C11-(2) A-	22,05 210	J
21.	Unknown ?	22.71 120	J
22.			
23.			
24.			
25.			
.26.			
27.			
28.			l
29.			
30.			

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: DE DNRE	C:DIV OF WATER RES	Contract: DNREC:DAWM	GGTP6S	
Lab Code: DE023	Case No.:	SAS No.:	SDG No.: #6960	_
Mairix: (soil/water)	SOIL	Lab Sample ID:	9805594	
Sample wt/vol:	30.3 (g/mL G	Lab File ID	P2137.D 000	395
Level: (low/med)	LOW	Date Received:	12/7/98	
% Moisture: 8	decanted: (Y/N):	N Date Extracted:	12/8/98	
Concentrated Extract Vo	lume: 500 (uL)	Date Analyzed:	1/11/99	
Injection Volume:	(uL)	Dilution Factor:	1.0	
GPC Cleanup: (Y/N)	Y pH:	7.63		
		Concentration Units:		
CAS No.		(ug/L or ug/Kg) ug/Kg	Q	
111-44-4	bis(2-Chloroethyl)ether		T U	
		360	U	
541-73-1	1,3-Dichlorobenzene	360	T	
106-46-7	1,4-Dichlorobenzene	360		
95-50-1	1,2-Dichlorobenzene	360	U	
108-60-1	2,2'-oxybis(1-Chloropropane)	360		
67-72-1	Hexachloroethane	360	U	
621-64-7	N-Nitroso-di-n-propylamine	360	U	
98-95-3	Nitrobenzene	360	U	
78-59-1	lsophorone	360	U U	
111-91-1	bis(2-Chioroethoxy)methane	360	U	
120-82-1	1,2,4-Trichlorobenzene	360	U	
91-20-3	Naphthalene	170	1	
106-47-8	4-Chloroaniline	360	U	
87-68-3	Hexachlorobutadiene	360	Ü	
91-57-6	2-Methylnaphthalene	110	1	
77-47-4	Hexachlorocyclopentadiene	360	U .	
91-58-7	2-Chloronaphthalene	360	ប	
88-74-4	2-Nitroaniline	360	U	
208-96-8	Acenaphthylene	160	j	
131-11-3	Dimethylphthalate	360	U	
606-20-2	2,6-Dinitrotoluene	360	U	
99-09-2	3-Nitroaniline	360	U	
83-32-9	Acenaphthene	240	J	
132-64-9	Dibenzofuran	190	J	
121-14-2	2,4-Dinitrotoluene	360	U	
86-73-7	Fluorene	250	J	
84-66-2	Diethylphthalate	360	U	
7005-72-3	4-Chlorophenyl-phenylether	360	U	•
100-01-6	4-Nitroaniline	360	U	
86-30-6	N-Nitrosodiphenylamine (1)	360	U	
101-55-3	4-Bromophenyl-phenylether	360	υ	
118-74-1	Hexachlorobenzene	360	Ü	
85-01-8	Phenanthrene	2000		

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	DE DNREG	C:DIV OF WATER RES	Contract:	DNREC:DAWM	GG	IP6S
Lab Code:	DE023	Case No.:	SAS No.:		SDG No.:	#6960
Matrix: (soi	il/water)	SOIL		Lab Sample ID:	9805594	
Sample wt/v	ol:	30.3 (g/mL G		Lab File ID:		000396
Level: (lo	w/med)	LOW		Date Received:	12/7/98	
% Moisture:	8	decanted: (Y/N)	: <u>N</u>	Date Extracted:	12/8/98	
Concentrated	i Extract Vol	ume: <u>500</u> (uL)		Date Analyzed:	1/11/99	
Injection Vo	lume:	2.0 (uL)		Dilution Factor:	1.0	
GPC Cleanu	p: (Y/N)	Y pl	H:7.63			
		<u>.</u>	Concentration	n Units:		
CA	S No.	Compound	(ug/L or ug/l	Kg) ug/Kg	Q	
120	0-12-7	Anthracene	T.	440		ı
86	-74-8	Carbazole		320	J	ĭ
84	-74-2	Di-n-burylphthalate		360	U	
20	6-44-0	Fluoranthene		2500		
12	9-00-0	Pyrene		3000	E	Ť
85	-68-7	Butylbenzylphthalate		360	U	•
56	-55-3	Benzo(a) Anthracene		1700		:
91	-94-1	3,3'-Dichlorobenzidine		360	U	
21	8-01-9	Chrysene		1900		:
11	7-81-7	bis(2-Ethylhexyl)phthalate		190	JB	
11	7-84-0	Di-n-octylphthalate		360	U	<u>;</u>
20.	5-99-2	Benzo(b)fluoranthene		2000		!
20	7-08-9	Benzo(k)fluoranthene		460		
50	-32-8	Benzo(a)pyrene		1400		
—	3-39-5	Indeno(1,2,3-ed)pyrene	•	940		
	-70-3	Dibenz(a,h)anthracene	·	430		
19	1-24-2	Benzo(g,h,i)perylene		660		
<u> </u>						
<u> </u>						
<u> </u>						•
<u> </u>						
<u> </u>	·· <u> </u>				ļ	
<u> </u>						
<u> </u>		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
<u> </u>					<u> </u>	
_			· · · · · · · · · · · · · · · · · · ·		1	
⊢					 	
<u> </u>						
L					<u> </u>	

(1) - Cannot be separated from Diphenylamine

Library Search Compound Report

000431

Data File : c:\hpchem\1\data\da40111.cim\p2137.d

Vial: 16 Acq On : 11 Jan 99 9:08 pm Sample : GGTP6S Operator: CIM

: GGTP6S : ESN:98055940 Inst : 5972-DEL4 Multiplr: 1.00 Misc

Method : K:\METHODS\140111B.M : CLP BNA Calibration

Library : L:\NBS7	5K.L			
R.T. Conc	Area	Relative to	ISTD	R.T.
24.47 6.66 ng/μl	967860	Perylene-d12		20.30
Hit# of 20	Tentative ID	Ref#		Qual
1 Androstane-3,6,17 2 4-Heptenoic acid, 3 1(4H)-Phenanthren 4 Pregnan-3-one, (5 5 Androstane-3,12,1	2-(methylsulfongone, 4a,4b,5,6,7,alpha.)- 7-trione, (5.beta	,8 W 33134 43210 a. 43121	002243-05-2 067428-09-5 057684-15-8 014778-11-1 053604-37-8	12 12
Abundance Scan 2123 6995 5000	302 205 273	137.D (-,*)	m/z 95.00 24.12 m/z 69.00	100.00%
m/z> 100	200 300	400	m/z 69.00	03.71%
Abundance#72822: And 123 137 5000- 0 m/z> 100	27302 207	rione, (5.alp	24.12 m/z 55.00	24.B3 79.97%
Abundance#33369: 4-H			1	
5000 44 81	205	-	24.12 m/z 109.00	24.83 70.72*
m/z> 100	200 300	400		
Abundance#33134: 1(4 95 5000-41 138	H) -Phenanthrenon 246 231	e, 4a,4b,5,6,	24.12 m/2 302.10	24.83
m/z> 100	200 300	400	24.12	24.83

p2137.d I40111B.M

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGTP6S

Lab Name:	DE DNRE	C:DIV OF W	ATER RE	<u> </u>	Contract:	DNREC:DAWM	000397
Lab Code:	DE023	_	Case No.	:	SAS No.:		SDG No.: #6960
Matrix: (soi	l/water)	SOIL	_			Lab Sample ID:	9805594
Sample wt/ve	ol:	30.3	_(g/mL)	<u>G</u>		Lab File ID	: P2137.D
Level: (lo	w/med)	LOW	_			Date Received:	12/7/98
% Moisture:	8	_	decant	ed: (Y/N)	N	Date Extracted:	12/8/98
Concentrated	Extract Vol	lume:	500	_(uL)		Date Analyzed:	1/11/99
Injection Vol	lume:	2.0	_(uL)			Dilution Factor:	1.0
GPC Cleanu	p: (Y/N)	Y	_	pH:	7.6		
Number TIC	's found:	22		C	Concentration (ug/L or u	•	

CAS Number	Compound Name	RT	Est. Conc	Q
1.	Unknown Older and Ressel	1.32	callet	1 A
2.	Unknown //	3.61	<i>y</i> 1500	J A
3.	Unknown	3.70	y 250] A
4.	Unknown	4.03	., 610	3 A
5.	Unknown /,	4.56	, 1800	3 A
6.	Unknown .,	4.94	210	J <i>A</i>
7. 486-25-9	9H-Fluoren-9-one	10.69	330	JN
8. 544-63-8	Tetradecanoic acid	10.75	230	JN
9. 132-65-0	Dibenzothiophene	10.84	250	JN
10.	Unk C1 3-Ring PAH	12.22	400	J
11.	Unk Cl 3-Ring PAH	12.29	420	J
12.	Unknown C11-622 Arany	2.46 عار-	520	J
13.	Unk C1 3-Ring PAH	12.52	200	J
14.	Unknown CH-CZ2 Acres 7	92.95	320	J
15. 84-65-1	9,10-Anthracenedione	12.98	330	JN
16.	Unk C1 4-Ring PAH	15.15	240	J
17.	Unknown Copers Arometer	<u>≈</u> 16.65	210	J
18.	Unk 5-Ring PAH	19.75	680	J
19.	Unk 5-Ring PAH	20.10	810	J
20.	Unk 5-Ring PAH	20.36	270	J
21.	Unk 5-Ring PAH	22.09	290	J
22.	Unknown ?	24,47	240	J
23.				
24,		1		· -
25.				
26.		1		
27.				
28.		T		
29.		i ·		
30.		1 -		

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEE

EPA SAMPLE NO.

Lab Name	: DE DNRI	EC:DIV OF WATER RES	Contract: DNREC:DAWM	GGT	P6SDL	
Lab Code:	DE023	Case No.:	SAS No.:	SDG No.:	#6960	
Matrix: (s	oii/water)	<u>SOIL</u>	Lab Sample III	: <u>9805594</u>	 00043	
Sample wt	/vol:	30.3 (g/mL G	Lab File I	D: <u>P2148.D</u>	00043	1
Level: ((low/med)	LOW	Date Received	: 12/7/98		
% Moistur	re: <u>8</u>	decanted: (Y/N)	: N Date Extracted	12/8/98		
Concentrat	ted Extract Vo	olume: 500 (uL)	Date Analyzed	: 1/12/99		
Injection V	/olume:	(uL)	Dilution Facto	r: 2.0		
GPC Clear	nup: (Y/N)	У р	H: 7.63			
			Concentration Units:			
(CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q		
ī	11-44-4	bis(2-Chloroethyl)ether	720	UD		
5	41-73-1	1,3-Dichlorobenzene	720	ŲĎ		
ī	06-46-7	1,4-Dichlorobenzene	720	UD		
5	75-50-1	1,2-Dichlorobenzene	720	UD		
	08-60-1	2,2'-oxybis(I-Chloropropane)	720	UD		
6	57-72-1	Hexachloroethane	720	UD		
<u> </u>	21-64-7	N-Nitroso-di-n-propylamine	720	UD		
<u> </u>	98-95-3	Nitrobenzene	720	ŲD		
-	8-59-1	Isophorone	720	UD		
	11-91-1	bis(2-Chloroethoxy)methane	720	UD		
<u> </u>	20-82-1	1,2,4-Trichlorobenzene	720	UD		
<u> </u>	71-20-3	Naphthalene	190	1D		
<u> </u>	06-47-8	4-Chloroaniline	720	UD		
1-	37-68-3	Hexachlorobutadiene	720	UD		
Ī	71-57-6	2-Methylnaphthalene	120	1D	•	
}	17-47-4	Hexachiorocyclopentadiene	720	UD		
)	71-58-7	2-Chloronaphthalene	720	UD		
1-	8-74-4	2-Nitroaniline	720	ŲD		
	08-96-8	Acenaphthylene	190	1D	-	
	31-11-3	Dimethylphthalate	720	ŲD		
ē	06-20-2	2,6-Dinitrotoluene	720	UD		
	9-09-2	3-Nitroaniline	720	UD		
8	3-32-9	Acenaphthene	270	1D		
P-	32-64-9	Dibenzofuran	210	JD.		
<u> </u>	21-14-2	2,4-Dinitrotoluene	720	UD		
	6-73-7	Fluorene	280	JD D		
 -	4-66-2	Diethylphthalate	720	UD		
_	005-72-3	4-Chlorophenyl-phenylether	720	UD		
<u> </u>	00-01-6	4-Nitroaniline	720	UD		
i-	6-30-6	N-Nitrosodiphenylamine (1)	720	UD		
_	01-55-3	4-Bromophenyl-phenylether	720	UD		
-	18-74-1	Hexachlorobenzene	720	UD		
<u> </u>					1	

2200

Phenanthrene

85-01-8

D

1C SEMIVOLATILE ORGANICS EPA SAMPLE NO.

		SCHITTOLATICE ORGAN	IICS AMAL	1313 DATA SHEET	GGT	P6SDL
Lab Nan	ne: DE DNRE	C:DIV OF WATER RES	Contract:	DNREC:DAWM		
Lab Cod	e: <u>DE023</u>	Case No.:	SAS No.:		SDG No.:	
Matrix:	(soil/water)	SOIL		Lab Sample ID:	9805594	000433
Sample v	wt/vol:	30.3 (g/mL G		Lab File ID:	P2148.D	
Level:	(low/med)	LOW		Date Received:	12/7/98	
% Moist	ture: 8	decanted: (Y/N):	<u> </u>	Date Extracted:	12/8/98	
Concenti	rated Extract Vol	lume: 500 (uL)		Date Analyzed:	1/12/99	
Injection	Volume:	(uL)		Dilution Factor:	2.0	
GPC Cle	eanup: (Y/N)	YpH;	7.63			
		C	oncentration	Units:		
	CAS No.	Compound (ug/L or ug/l	Kg) <u>ug/Kg</u>	Q	_
	120-12-7	Anthracene		480	1D	
	86-74-8	Carbazole		320	1D	
	84-74-2	Di-n-butylphthalate		720	UD	
	206-44-0	Fluoranthene		2700	D	
	129-00-0	Pyrene		2900	D	
	85-68-7	Butylbenzylphthalate		720	ŪD	
	56-55-3	Benzo(a)Anthracene		1400	O	
	91-94-1	3,3'-Dichlorobenzidine	į	720	ับD	
	218-01-9	Chrysene	<u> </u>	1700	D	
	117-81-7	bis(2-Ethylhexyl)phthalate		140	מנ	
	117-84-0	Di-n-octylphthalate	1	720	UD	
	205-99-2	Benzo(b)fluoranthene		1500	D	
	207-08-9	Benzo(k)fluoranthene		860	D	
	50-32-8	Benzo(a)pyrene		1400	D	
	193-39-5	Indeno(1,2,3-cd)pyrene		1200	D	ı.
	53-70-3	Dibenz(a,h)anthracene		520	JĐ	
	191-24-2	Benzo(g,h,i)perylene		890	D	
					<u> </u>	
			<u> </u>			
	<u> </u>		<u> </u>		<u> </u>	
			 		.	
			ļ			

(1) - Cannot be separated from Diphenylamine

1B
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET[

EPA SAMPLE NO.

Lab Name:	DE DNRE	C:DIV OF WATER I	RES	Contract:	DNREC:DAWM	GG.	rp9s
Lab Code:		Case No.:		SAS No.:		SDG No.:	<u>#6960</u>
Matrix: (s	oil/water)	SOIL	_		Lab Sample ID:	9805595	000.00
Sample wt/	/vol:	30.7 (g/mL	G		Lab File ID:	P2138.D	CC0469
Level: (low/med)	LOW			Date Received:	12/7/98	
% Moistur	e: <u>10</u>	decan	ted: (Y/N):	N	Date Extracted:	12/8/98	_
Concentrat	ed Extract Vo	lume: 500	(uL)		Date Analyzed:	1/11/99	
Injection V	olume:	2.0 (uL)			Dilution Factor:	1.0	
GPC Clean	աթ։ (Y/N)	Y	pН;	7.34			
			C	oncentration	ı Units:		
c	AS No.	Compound		ng/L or ng/l		Q	
_	11-44-4			T	<u> </u>		l
<u> </u>	41-73-1	bis(2-Chloroethyl)et 1,3-Dichlorobenzen			360	U	
	06-46-7	1,4-Dichlorobenzen			360	U	
	5-50-1	1,2-Dichlorobenzen			360 360	U U	
_	08-60-1	2,2'-oxybis(1-Chlor		 -	360	υ	
	7-72-1	Hexachloroethane	opropane)		360	U	
	21-64-7	N-Nitroso-di-n-prop	ndamina		360	<u> </u>	
	8-95-3	Nitrobenzene	yranine			U	
<u> </u>	8-59-1				360 360	U	
-	11-91-1	Isophorone bis(2-Chloroethoxy)	mathana	-		U	
<u>-</u>	20-82-1				360	υ	
	1-20-3	1,2,4-Trichlorobenz	cite		360	1	
<u></u>	06-47-8	Naphthalene 4-Chloroaniline			120	ח ח	
<u> </u>	7-68-3	4-Cmoroamme Hexachlorobutadien			360		
<u></u>					360	U	
-	1-57-6	2-Methylnaphthalen			75]	
<u> </u>	7-47-4	Hexachlorocyclopen			360	U	
_	1-58-7	2-Chioronaphthaicne	<u> </u>		360	Ü	
_	8-74-4	2-Nitroaniline			360	U	
<u>-</u>	08-96-8	Acenaphthylene			210		
<u> </u>	31-11-3 06-20-2	Dimethylphthalate			360	U	
_		2,6-Dinitrotoluene		 	360	U	
L.	9-09-2	3-Nitroaniline			360	U	
_	3-32-9	Acenaphthene			150	1	
_	32-64-9	Dibenzofuran			160	1	
—	21-14-2	2,4-Dinitrotoluene			360	U	
-	6-73-7	Fluorene		1	200	1	
_	4-66-2	Diethylphthalate		1	360	Ü	
	005-72-3	4-Chlorophenyl-phe	nylether	1	360	บ	
-	00-01-6	4-Nitroaniline		<u> </u>	360	U	
	6-30-6	N-Nitrosodiphenyla			360	U	
1	01-55-3	4-Bromophenyl-phe	nylether	<u> </u>	360	U	

118-74-1

85-01-8

Hexachlorobenzene

Phenanthrene

360

1700

Date Analyzed: 1/11/99

Dilution Factor: 1.0

			IC.		<u> EPA SAM</u>	PLE NO,
Lab Name:	DE DNREC	SEMIVOLATILE ORGA	ANICS ANAI	YSIS DATA SHEET DNREC:DAWM		TP9S
Lab Code:	DE023	Case No.:	SAS No.:		SDG No.:	#6960
Matrix: (soi	il/water)	SOIL		Lab Sample ID:	9805595	000470
Sample wt/v	ol:	30.7 (g/mL G		Lab File ID:	P2138.D	
Level: (îc	w/med)	LOW		Date Received:	12/7/98	
% Moisture:	10	decanted: (Y/N)	: <u>N</u>	Date Extracted:	12/8/98	

pH: __7.34

500 (uL)

2.0 (uL)

Y

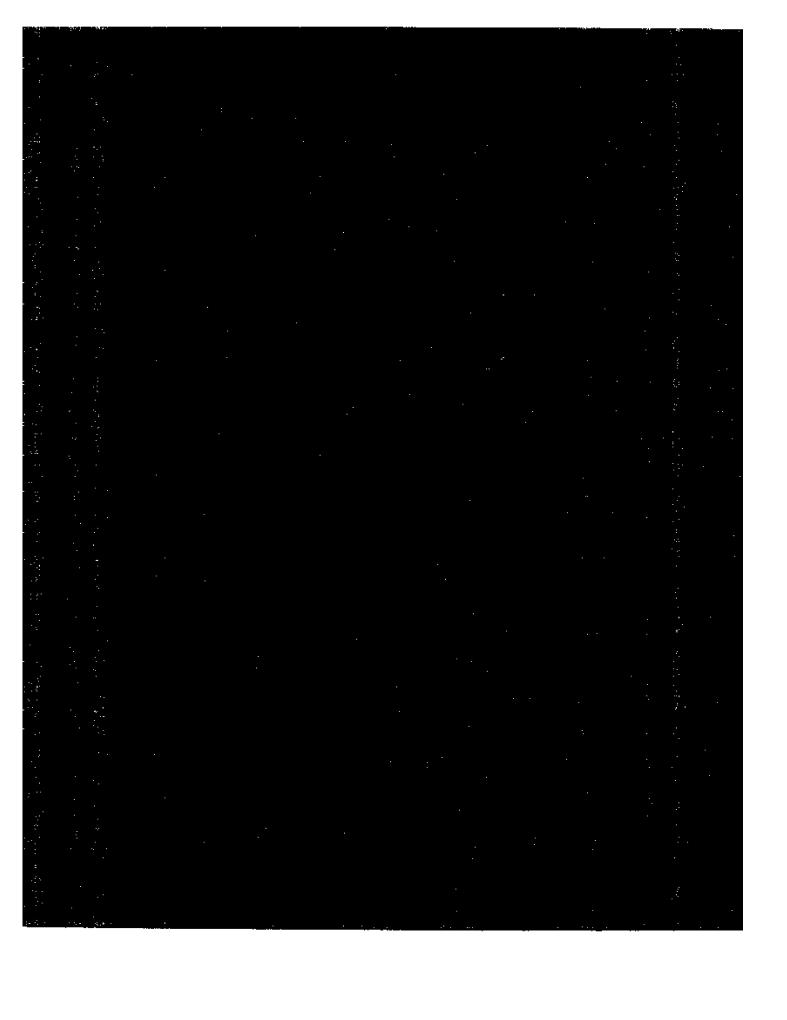
		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
120-12-7	Anthracene	340	J
86-74-8	Carbazole	240	J
84-74-2	Di-n-butylphthalate	360	U
206-44-0	Fluoranthene	1900	
129-00-0	Pyrene	2400	
85-68-7	Burylbenzylphthalate	360	U
56-55-3	Benzo(a)Anthracene	1200	
91-94-1	3,3'-Dichlorobenzidine	360	U
218-01-9	Chrysene	1400	
117-81-7	bis(2-Ethylhexyl)phthalate	81	JB
117-84-0	Di-n-octylphthalate	360	U
205-99-2	Benzo(b)fluoranthene	1400	
207-08-9	Benzo(k)fluoranthene	480	
50-32-8	Benzo(a)pyrene	1100	
193-39-5	Indeno(1,2,3-cd)pyrene	770	
53-70-3	Dibenz(a,h)anthracene	310	J
191-24-2	Benzo(g,h,i)perylene	520	
			1
		-	1
•	- -		1
·			
		3	† · · · · ·
ï.	-		
		· · · · · · · · · · · · · · · · · · ·	
			+
	··-·	<u> </u>	

(1) - Cannot be separated from Diphenylamine

Concentrated Extract Volume:

Injection Volume:

GPC Cleanup: (Y/N)


1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GGTP9S

Lab Name:	DE DNREC	DIV OF W	ATER RES	Contract:	DNREC:DAWM	000471
Lab Code:	DE023		Case No.:	SAS No.:		SDG No.: #6960
Matrix: (soil)	/water)	SOIL	_		Lab Sample ID:	9805595
Sample wt/vo	l: _	30.7	_(g/mL) <u>G</u>	_	Lab File ID	: P2138.D
Level: (lov	v/med)	LOW	_		Date Received:	12/7/98
% Moisture:	<u>1</u> 0		decanted: (Y/N)) <u>N</u>	Date Extracted:	12/8/98
Concentrated	Extract Volu	me:			Date Analyzed:	1/11/99
Injection Volu	umė; _	2.0	(uL)		Dilution Factor:	1.0
GPC Cleanup	: (Y/N)	Υ	p1	H: 7.3		
Number TICs	: found:	22		Concentration		

				
CAS Number	Compound Name	RT	Est. Conc	Q
1.	Unknown Alkane	1.98	300	1
2.	Unknown C3 Benzene	3.20	230	J
3.	Unknown Aldorn Sous ATI	- 2/32.	(a. H 190	11
_ 4.	Unknown *	3.60	ar 1100	J A
5.	Uuknowa "	4.04	940	14
6.	Unknown #	4.55	a 1900	3 A.
7.	Unknown 4	4.94	4 230	14
8. 486-25-9	9H-Fluoren-9-one Car-czz	10,70	B.290	JN
9. 132-65-0	Dibenzothiophene	10.84	210	JN
10.	Unk C1 3-Ring PAH CH-CZZ	123	£ 210	J
11.	Unk C1 3-Ring PAH @	12.29	u 300	. J
12.	Unk C1 3-Ring PAH	12.47	9 360	J
13. 84-65-1	9,10-Anthracenedione «	12.98	4 520	ĴΝ
14. 5737-13-3	Cyclopenta(def)phenanthrenon	13.69	a 290	JN
15.	Unk C1 4-Ring PAH 4	15.15	" 220	Ì
16.	Unk 5-Ring PAH 4	19.74	→ 580	ĭ
17.	Unk 5-Ring PAH "	20.08	7,760	1
18.	Unknown Alkane	21.45	240	J
19.	Unk 5-Ring PAH CH-C24	122,06	330	1
20.	Unk 5-Ring PAH ·/	22.44	4 210	1
21.	Unk 5-Ring PAH 🕠	22.51	4 200	Ţ
22.	1,2:4,5-Dibenzpyrene	24.47	4 210	I
23.				
-24.				
25.				
26.				
27.				
28.				
29.				
30.	T	Ī		
	-	_	•	-

DATA SUMMARY FORM: INORGANICS SHALLOW SOIL SAMPLES TABLE 1.

(mg/Kg)

Sample Number Sample Location	GG TP-4S 0-6"	RBC* INDUSTRIAL	RIAL	RBC* RESIDENTIAL	VTIAL	HSCA** (Shallow Soils)	w Soils)
Analyte	-	10/1/98		10/1/98		2/1/98	
Aluminum	8,840	2,044,000	z	78,214	z	20,000	
Antimony		818	N	31	z	3	
Arsenic	8.5	√610/3.8	NC	^23/0.43	NC	2/0.4	N/C
Barium	334	143,080	z	5,475	z	550	
Beryllium		4,100	z	091	Z	0.5	}
Cadmium		2,044	N	84	z	4	
Calcium	8,100	'ln	l	NL		NL	
Chromium	29.2	3,066,000/6,132	III/VI	117,321/235	IA/III	0/2/000,1	IA/III
Cobalt		122,640	_N ·	69'4	z	470	
Copper	121	81,760	N	3,129	z	1,000	
Iron	17,100	613,200	N	23,464	N	23,000	
Lead	1,510	000'1**		007**		400	
Magnesium		NE		NL		Ę	
Manganese	210	40,880	N	1,564	N	180	:
Mercury	66.0	019~	z	V23	Z	01	
Nickel	21.7	40,880	N	1,564	z	160	
Potassium		NL		NL N		NL	
Selenium	2.1	10,220	z	168	N	36.	
Silver		022'01	Z	160	z	39	
Sodium		nī.	i	N		Z.	
Thallium		143	z	5.5	Z	18	•
Vanadium	43.0	14,308	N	248	z	\$\$	
Zinc	341	613,200	Z	23,464	N	1,000	
Cyanide		40,880	N	1,564	N	160	

^ EPA Region III Risk-Based Concentration Tables. J. Hubbard, 1072297

* - LPA Region III Risk-Based Concentration Tubles, J. Hubbard, 10-01-98

•• = HSCA Uniform Risk Based Remediation Standards for noncritical unrestricted land use, 24,98 (TH & VI) — Chronium III, Chromium VI values

J — analyte Prescut. Reported value may not be accurate or presixe.

NL – Not Listed C = Carcinogenic N – Non Carcinogenic ND – Not Detected

ij99015.xls

DATA SUMMARY FORM: INORGANICS DEEP SOIL SAMPLES TABLE 2.

mg/Kg

							:			:	
Sample Number	GG TP-2D	GG TP-4C	GG TP-9D	GG TP-15	GG TP-16D	RBC* INDUSTRIAL	RIAL	RBC* RESIDENTIAL	TIAL	HSCA** (Deep Soils)	Soils)
Sample Location	10,	ě	<u>:</u>	'n	==	тв/Кр		mg/Kg		mg/Kg	
Analyte				Duplicate of TP-4C	Duplicate of TP-9D	10/1/98		10/1/98	_	2/1/98	
Aluminum	8,750	8,630	12,700	7,780	11,900	2,044,000	Z	78,214	z	20,000	
Antimony						818	z	31	z	3	
Arsenic		10.2	18.0	12.3	40.8	8.5/013%	Š	^23/0.43	~	2/0.4	N/C
Barium	76.1	413	216	529	194	143,080	N	5,475	z	550	
Beryllium						4,100	z	160	z	0.5	
Cadmium						2,044	z	78	z	4	
Calcium	3,080	5,250	3,610	4,850	4,680	NL		NL		Z,	
Chromium	15.8	21.1	31.3	21.6	56.1	3,066,000/6,132	III/VI	117,321/235	III/VII	1,000/270	III/VI
Cobalt	16.0				36.0	122,640	z	4,693	z	470	
Copper		128	94.9	124	343	81,760	z	3,129	z	1,000	
lron	36,400	12,300	44,500	20,700	80,800	613,200	z	23,464	z	23,000	
Lead	2.1	709	546	1,450	632	000'1**		**400		400	
Magnesium	1,670					Ŋ.		NL		Z.	
Manganese	439	191	607	228	735	40,880	N	1,564	Z	180	
Mercury		0.46	0.79	0.62	0.46	√610	Ν	^23	N	10	
Nickel	26.2	21.0	35.8	26.2	104	40,880	'n	1,564	Z	160	
Potassium		1,640				NL		NL		N.	
Selenium		3.2	2.9	4.1	4.2	10,220	z	391	z	39	
Silver	ļ					10,220	N	391	z	39	
Sodium		:				NL		NL		Z	
Thallium			i			143	Z	5.5	z	18	
Vanadium	36.2	34.4	41.5	39.3	41.3	14,308	N	548	z	55	
Zinc	18.7	863	889	1,010	1,510	613,200	N	23,464	Z	1,000	
Cyanide				0.76		40,880	z	1,564	z	160	
THE PARTY OF THE P	A Participant of the Line	POLICE STATE OF					l				1

EPA Region III Risk-Based Concentration Tables. I. Hubbard, 10/23/97
 EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/1/98
 — HSCA Uniform Kisk biased Remediation Standards for neweptical unrestricted land use, 2:1/98

(III & VI) = Chronium III, Chronium VI values I = analyte Present, Reported value may not be accurate or precise.

NJ. – Not Listed C – Carcinogenie N – Non Carcinogenie ND = Not Detected

TABLE 3. DATA SUMMARY FORM: VOLATILES (1) DEEP SOIL SAMPLE ug/Kg

		RBC*		RBC**	
Sample Number	GC TP-2D	Industrial Soil	_	Residential Soil	ji
Sample Location	, ()1	ug/Kg		ug/Kg	
		10/1/98		10/1/98	
Chloromethane		440,000	C	49,000	С
Bromomethane		2,900,000	z	110,000	z
Vinyl Chloride		3,000	ບ	340	၁
Chloroethane		820,000,000	z	31,000,000	z
Methylene Chloride		260,000	C	85,000	Ü
Acetone		200,000,000	z	7,800,000	Z
Carbon Disulfide		200,000,000	z	7,800,000	z
1,1-Dichloroethene		005'6	C	1,100	C
1,1-Dichloroethane		200,000,000	z	7,800,000	z
1,2-Dichlorocthene (total)		1 8,000,000	z	700,000	z
Chloroform	-	040,000	c	100,000	С
1,2-Dichloroethane		000'£9	c	7,000	c
2-Butanone		IN		NĽ	
1,1,1-Trichlorocthane		220,000	C	25,000	С
Carbon Tetrachloride		44,000 (c	4,900	C
Vinyl Acetate		1,000,000,000,1	z	78,000,000	z
Bromodichloromethane		92,000	C	10,000	၁

^ = EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

* = FPA Region III Risk-Based Concentration Tables. I. Hubbard, 19/01/98

NL - Not Listed C = Carcinogenio

N = Non Careinogenie

TABLE 4. DATA SUMMARY FORM: VOLATILE (2) DEEP SOIL SAMPLE ug/Kg

Sample Number GG TP-2D Industrial Soil Resid Sample Location 10° mg/Kg m 1,2-Dichloropropane 84,000 C cis-1,3-Dichloropropene 33,000 C Dibromochloromethane NIL NIL 1,1,2-Trichloropropene 33,000 C Benzene 200,000 C Benzene NIL C Benzene NIL C Benzene 33,000 C Benzene NIL C Benzene NIL C Tetrachlorochane NIL C Tetrachlorochane NIL C Tetrachlorochane 110,000,000 C Tetrachlorochane 29,000 C Toluene 411,000,000 N Chlorobenzene 410,000,000 N Ethylbenzene 410,000,000 N 1,6 Syrene (cotal) 1,000,000,000 N 1,6 Cotal 1,000,000			RBC*	Г	RBC*	
Sample Location 10° mg/Kg Illoropropane 84,000 C Dichloropropene 33,000 C Ochloropropene NL C Orm 720,000 C Orm 720,000 C Orm NL C Oroethene NL C Oroethene NL N I-2-Pentanone NL C Oroethene 110,000 C Cetrachloroethane 29,000 C Cetrachloroethane 410,000,000 N Incene 200,000,000 N Incene 410,000,000 N Incene 200,000,000 N Incene 1,000,000,000 N	Sample Number	GG TP-2D	Industrial Soil		Residential Soil	Œ
Ioropropane 84,000 C Dichloropropene 33,000 C oethene 33,000 C ochloromethane NL C ichlorocthane 100,000 C ichloropropene 33,000 C r-Dichloropropene 33,000 C r-Dichloropropene NL C r-Dichloropropene 33,000 C r-Dichloropropene 33,000 C r-Dichloropropene NL N one NL N oroethene 110,000 C retrachloroethane 410,000,000 N retrachloroethane 410,000,000 N resene 200,000,000 N resene 200,000,000 N total) 1,000,000,000 N	Sample Location	10,	mg/Kg		mg/Kg	
loropropane 84,000 C Dichloropropene 33,000 C octhene 520,000 C ochloromethane NL C ichloropropene 33,000 C -Dichloropropene 33,000 C -Dichloropropene NL C ome NL C cl-2-Pentanone NL C onoethene 110,000 C cletrachloroethane 410,000,000 N enzene 41,000,000 N torache 200,000,000 N toral 410,000,000 N toral 1,000,000,000 N			10/1/98		10/1/98	İ
Dichloropropene 33,000 C oethene 520,000 C ochloromethane NL NL ichlorocthane 100,000 C r-Dichloropropene 33,000 C r-Dichloropropene NL C r-Dichloropropene NL C orne NL N derecthene 110,000 C Fetrachloroethane 411,000,000 N enzene 410,000,000 N total) 1,000,000,000 N total) 1,000,000,000 N	1,2-Dichloropropane			C	9,400	ပ
oethene 520,000 C ochloromethane NL C ichlorocthane 33,000 C -Dichloropropene 33,000 C -Dichloropropene NL C 1-2-Pentanone NL C one NL C orroethene 110,000 C certachloroethane 4110,000,000 N enzene 41,000,000,000 N toral 410,000,000 N total 1,000,000,000 N	cis-1,3-Dichloropropene			ပ	3,700	ပ
ichloromethane NT ichloropthane ichloroethane 100,000 C ichloroptopene 33,000 C ichloropropene 33,000 C ichloropropene 33,000 C ichloropthane NL ichloroethane NL ichloroethane ichrachloroethane Trichloroethene		520,000	၁	58,000	U	
ichloroethane 100,000 C 200,000 C 33,000 C 33,000 C I-Dichloropropene 33,000 C I-2-Pentanone NL NL Oroethene NL I10,000 C I-2-trachloroethane 110,000 C I-2-5,000	Dibromochloromethane		N		Z	
Dichloropropene 200,000 C -Dichloropropene 33,000 C -2-Pentamone NL NL -2-Pentamone NL NL -2-Pentamone NL C -	1,1,2-Trichloroethane			ပ	11,000	ပ
-Dichloropropene	Benzene			၁	22,000	ပ
orm 720,000 C 1-2-Pentanone NL C one NL C oroethene 110,000 C Tetrachloroethane 29,000 C enzene 410,000,000 N izene 200,000,000 N total) 1,000,000,000 N total) 1,000,000,000 N	trans-1,3-Dichloropropene		33,000	٦	3,700	Ü
1-2-Pontamone NL NL one one one one one one one one one one	Вготоботп		<u>. </u>	Ç	81,000	ပ
one NL NL oroethene 110,000 C Tetrachloroethane 29,000 C enzene 410,000,000 N izene 200,000,000 N total) 1,000,000,000 N	4-Methyl-2-Pentanone		N		'n	
retrachloroethane 110,000 C retrachloroethane 29,000 C enzene 410,000,000 N rzene 200,000,000 N total) 1,000,000,000 N	2-Hexanone		N		Ę	
Tetrachloroethane 29,000 C enzene 410,000,000 N enzene 200,000,000 N izene 410,000,000 N total) 1,000,000,000 N	Tetrachloroethene			ú	12,000	ပ
enzene 41,000,000 N	1,1,2,2-Tetrachloroethane			၁	3,200	ပ
total)	Toluene		L	z	16,000,000	z
total) 200,000,000 N 410,000,000 N	СһІоговенzеле		l	z	1,600,000	z
410,000,000 N (total) (1,000,000,000 enzene			z	7,800,000	z	
1,000,000,000,000 N	Styrene		L	z	16,000,000	z
	Xylene (total)			N	160,000,000	z

EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98
 EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/9+A58

NI, = Not Listed C = Carcinogenic N = Non Carcinogenic

DATA SUMMARY FORM: SEMIVOLATILE (1) SHALLOW SOIL SAMPLES TABLE 5. ug/Kg

						RBC*		RBC *	HSC	HSCA URS**
Sample Number	GG TP-3S	GG TP-58	GG TP-6S GG TP-9S	GG TP-9S	GG SS-4	Industrial Soil		Residential Soil		(Deep Soils)
Sample Location	12-18"	15"	12-18"	12-18"	9-0	ug/Kg		ug/Kg		1g/Kg
						10/1/98		10/1/98		2/1/98
Phenol						1,226,400,000	z	46,928,571 N		1,000
bis(2-Chloroethy1)ether						5,203	ņ	581 C		200
2-Chlorophenol						10,220,000	z	391,071 N		39,000
1,3-Dichlorobenzene (M)						61,320,000	z	2,346,429 N		700,000
1,4-Dichlorobenzene (P)						238,467	ပ	26,614 C		27,000
1,2-Dichlorobenzene (O)						183,960,000	z	7,039,286 N	L.	560,000
2-Methylphenol						102,200,000	z	3,910,714 N		390,000
2,2'-oxybis(1-Chloropropane)						NL		NL	Z	
4-Methylphenol						10,220,000	z	391,071 N		39,000
N-Nitroso-di-n-propylamine	Ü					818	၁) 16		8
Hexachloroethane					:	408,800	ပ	45,623 C		46,000
Nitrobenzene						1,022,000	z	39,107 N		4,000
Isophorone						6,024,421	С	672,343 C		670,000
2-Nitrophenol						NL		Į,	ž	
2,4-Dimethylphenol						40,880,000	z	1,564,286 N	_	160,000
bis(2-Chloroethoxy)methane						NL		N.	ΣĮ	
2,4-Dichlorophenol						6,132,000	z	234,643 N		23,000
1,2,4-Trichlorobenzene						20,440,090	z	782,143 N		78,000
Naphthalene	130 J		170 J	120 J	920	40,880,000	N	1,564,286 N		310,000
4-Chloroaniline						8,176,000	z	312,857 N		31,000

* = EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

* = EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

** = HSCA Uniform Kisk Based Remediation Standards for noncritical uncestricted land use, 2/1/98 $J={
m analyte}$ Present. Reported value may not be accurate or precise.

C = Carcinogenio N = Non Carcinogenio NL = Not Listed

TABLE 6. DATA SUMMARY FORM: SEMIVOLATILE (2) SHALLOW SOIL SAMPLES

ug/Kg

Sample Number	GG TP-3S	GG TP-58	GG TP-6S	GG TP-9S	GG SS-4	RBC * Industrial Soils		RBC * Residential Soils	HSCA URS**	* 2
Sample Location	12-18"	12"	12-18"	12-18"	.9-0	ug/Kg		ug/Kg		<u> </u>
						10/1/98	1	10/1/98	2/1/98	
Hexachlorobutadiene						73,374	Ü	8,189 C	3,8	8,000
4-Chloro-3-methylphenol						N.		Z	NL	
2-Methylnaphthalene	83 J		110.1	75.3	700	40,880,000	z	1,564,286 N		
Hexachlorocyclopentadiene		ſſ	m	j,		14,308,000	z	547,500 N	10,000	900
2,4,6-Trichlorophenol						520,091	၁	58,066 C	58,000	000
2,4,5-Trichlorophenol						204,400,000	z	7,821,429 N	780,000	000
2-Chloronaphthalene (beta)						163,520,000	z	6,257,143 N	630,000	000
2-Nitroaniline						√000 ʻ 071	z	4,700^ N	Ψ,	200
Dimethyl phthalate						20,440,000,000	z	782,142,857 N	1,000,000	8
Acenaphthylene	170 J	f IS	160 J	210 J		N		E E	Z	
2-6-Dinitrotoluene						2,044,000	z	78,214 N	8,0	8,000
3-Nitroaniline						√000'001'9	z	230,000^ N	23,000	00
Acenaphthene	840		240 J	150 J	1500	122,640,000	z	4,692,857 N	470,000	000
2,4-Dinitrophenol						40,880,000	z	1,564,286 N	16,000	00
4-Nitrophenol						16,352,000	z	625,714 N	63,000	000
Dibenzofuran	710		190 J	160 J	026	8,176,000	z	312,857 N	31,000	2
2,4-Dinitrotoluene						4,088,000	Z	156,429 N	16,000	000
Diethyl phthalate		•				1,635,200,000	z	62,571,429 N	1,000,000	8
4-Chlorophenyl-phenyl ether						NL		NL	N.	
Fluorene	1,200	20 J	250 J	200 J	1,300	81,760,000	Z	3,128,571 N	310,000	S
4-Nitroaniline	ſΩ					€,100,000	Z	230,000^ N	23,000	Ş
4,6-Dinitro-2-methlyphenol						204,400	z	78,210 N	NL	

[^] EPA Region III Risk-Based Concentration Tables, J. Hubbard, 10/22/97

^{* =} EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

^{** =} HSCA Uniform Risk-based Remediation Standards for concertical uncestricted land use, 2/1/98
1 ** Analyte Present. Reported value may not be accurate or precise

NL = Not Listed

C = Carcinogenie

N - Non Carcinogenic

TABLE 7. DATA SUMMARY FORM: SEMIVOLATILE (3) SHALLOW SOIL SAMPLES

ug/Kg

						RBC *	RBC *	4K	HSCA**
Sample Number	GG TP-3S	GG TP-58	GG TP-5S GG TP-6S GG TP-9S	GG TP-9S	GG SS-4	Industrial Soil	l Residential Soil	ial Soi	URS
Sample Location	12-18"	12"	12-18"	12-18"	<u>.</u> 9-0	ug/Kg	ug/Kg	<u>9</u>	ug/Kg
						10/1/98	10/1/98	86	2/1/98
N-Nitrosodiphenylamine (1)						1,168,000	C 130,352	52 C	130,000
4-Bromophenyl-phenyl ether	•					120,000,000^	N 4,500,000^	z ŏ	450,000
Hexachlorobenzene						3,577	2	399 C	400
Pentachlorophenol						47,693	S.	5,323 C	5,000
Phenanthrene	10,000	290 J	2,000	1,700	8,200	NL	N.		1,000,000
Anthracene	3,700	61 J	440	340 J	2,400	613,200,000	N 23,464,286	N 98	1,000,000
Carbazole	1,400	39 J	320 J	240 J	1,800	286,160	C 31,936	36 C	32,000
Di-n-buty lphthalate						NL	NI,		īz
Fluoranthene	23,000	740	2,500	1,900	001,6	81,760,000	N 3,128,571	17.	310,000
Pyrene	21,000	950	2,900	2,400	8,700	61,320,000	N 2,346,429	29 N	230,000
Butyl benzyl phthalate	£7.3					408,800,000	N 15,642,857	57 N	930,000
3,3'-Dichlorobenzidine						12,718), C 1,	1,419 C	<u> </u>
Benzo(a)anthracene	14,000	550	1,700	1,200	5,500	7,840	<u>~</u> ا	875 C	006
Chrysene	14,000	650	1,900	1,400	6,100	784,000	C 87,497	97 C	88,000
bis(2-Ethylhexyl)phthalate (DEHP))					408,800	C 45,623	23 C	46,000
di-n-Octyl phthalate						40,880,000	N 1,564,286	N 98	160,000
Benzo(b)fluoranthene	14,000	560	2,000	1,400	5,400	1,840	3	875 C	906
Benzo(k)fluoranthene	8,000 J	390	460	480	3,500	78,400	C 8,	8,750 C	9,000
Benzo(a)pyrene	11,000	550	1,400	1,100	4,900	184	c	87 C	06
Indeno(1,2,3-cd)Pyrenc	8,900	440]	940 J	140 J	3,100 J	7,840	3	875 C	006
Dibenz(a,h)anthracene	3,400	160 J	430	310 J	1,500	787	ာ ၁	87 C	8
Benzo(g,h,i)perylene	7,300	330 J	660 3	520 J	2,000 J	N.	NI	-	N.
A B FPA Region 111 Misk Based Concentration Tables	CONTRACTOR PARTY NAMED IN CONTRACTOR	במינו						ł	

[^] EPA Region III Kisk-Based Concentration Tables. J. Hubbard, 10/22/97

NI, - Not Listed

C = Carcinogenic N = Noo Carcinogenic

 ⁼ EPA Region III Risk-Based Concentration Tables. J. Hubbart, 10/01/98

 $^{^{**}}$ = HSCA Uniform Risk-based Remediation Stundards for noncritical unrestricted land use, 271.98

J - Analyte Present. Reported value may not be accurate or precise

DATA SUMMARY FORM: SEMIVOLATILE (1) **DEEP SOIL SAMPLES** TABLE 8.

ug/Kg

Sample Number Sample Location	GG TP-2D 10'	GG TP-10D	RBC * Industrial Soil ug/Kg 10/1/98		Residential Soil ug/Kg		HSCA URS** (Deep Soils) ug/Kg 2/1/98
Phenol			1,226,400,000	z	46,928,571	z	1,000
bis(2-Chloroethyl)ether			5,203	ပြ	581	Ç	200
2-Chlorophenol			10,220,000	N	391,071	z	39,000
1,3-Dichlorobenzene (M)			61,320,000	z	2,346,429	z	700,000
1,4-Dichlorobenzene (P)			238,467	၁	26,614	C	27,000
1,2-Dichlorobenzene (O)			183,960,000	z	7,039,286	z	000'095
2-Methylphenol			102,200,000	z	3,910,714	z	390,000
2,2'-oxybis(1-Chloropropane)			NL	:	NĽ		N
4-Methylphenol			10,220,000	z	391,071	Z	39,000
N-Nitroso-di-n-propylamine			818	C	16	၁	06
Hexachloroethane			408,800	Ç	45,623	၁	46,000
Nitrobenzene			1,022,000	N	39,107	z	4,000
Isophorone			6,024,421	ပ	672,343	၁	670,000
2-Nitrophenol			NL		NL		Ę
2,4-Dimethylphenol			40,880,000	z	1,564,286	z	160,000
bis(2-Chloroethoxy)methane			NL		NL		NL
2,4-Dichlorophenol			6,132,000	Ν	234,643	z	23,000
1,2,4-Trichlorobenzene			20,440,000	Z	782,143	z	78,000
Naphthalene		140 J	40,880,000	z	1,564,286	N	310,000
4-Chloroaniline			8,176,000	Ν	312,857	Z	31,000

• = EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

• = EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

•• = HSCA Uniform Risk Based Remediation Standards for noncritical unrestricted land use, 2/1/98

J = analyte Present. Reported value may not be accurate or precise.

NL = Not Listed C = Carcinogenic N - Non Carcinogeniu

TABLE 9. DATA SUMMARY FORM: SEMIVOLATILE (2) DEEP SOIL SAMPLES

ug/Kg

Sample Number	GC TP-2D	GG TP-10D	RBC * Industrial Soils	s.	RBC * Residential Soils		HSCA URS** (Deep Soils)
Sample Location	10,	111.	ug/Kg 10/1/98		ug/Kg 10/1/98		ug/Kg 2/1/98
Hexachlorobutadiene			73,374	၁	8,189 C	F)	8,000
4-Chloro-3-methylphenol			N.		ž	1	Ę
2-Methylnaphthalene		£ \$6	40,880,000	z	1,564,286 N	-	
Hexachlorocyclopentadiene	in	m	14,308,000	z	S47,500 N		10,000
2,4,6-Trichlorophenol			520,091	C	2 990'85 C	6.3	58,000
2,4,5-Trichlorophenol			204,400,000	z	7,821,429 N	-	780,000
2-Chloronaphthalene (beta)			163,520,000	z	6,257,143 N	7	630,000
2-Nitroaniline			120,000^	z	4,700 [~] N	<u>-</u>	500
Dimethyl phthalate			20,440,000,000	z	782,142,857 N	_	1,000,000
Acenaphthylene		180 J	Z.		Z.	12	NL
2-6-Dinitrotoluene			2,044,000	z	78,214 N	7	8,000
3-Nitroaniline			6,100,000^	z	230,000^ N	17	23,000
Acenaphthene		300 J	122,640,000	z	4,692,857 N	-	470,000
2,4-Dinitrophenol			40,880,000	z	1,564,286 N	7	16,000
4-Nitrophenol			16,352,000	z	625,714 N	_	63,000
Dibenzofuran		260 J	8,176,000	z	312,857 N		31,000
2,4-Dinitrotoluene			4,088,000	z	156,429 N	-	16,000
Diethyl phthalate			1,635,200,000	z	62,571,429 N	-	1,000,000
4-Chlorophenyl-phenyl ether			JN.		Z	2	Ę
Fluorene		430	81,760,000	z	3,128,571 N	<u></u>	310,000
4-Nitroaniline			√000,000,9	z	230,000^ N	<u> </u>	23,000
4,6-Dinitro-2-methlyphenol			204,400	z	78,210 N		NĽ

^= EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

EPA Region III Risk-Based Concentration Tables. J. Hubbard, 10/01/98

** * ISCA Uniturn Risk-based Remediation Standards for noncritical unrestricted land use, 2/1/98

J = Analyte Present. Reported value may not be accurate or precise

C = Curcinogenic N = Non Carcinogenic

NJ. - Not Listed

N = Non Carcinografic ND = Not Detected

DATA SUMMARY FORM: SEMIVOLATILE (3) DEEP SOIL SAMPLES TABLE 10.

ug/Kg

			RBC *		RBC *		HSCA**
Sample Number	GC TP-2D	GG TP-10D	Industrial Soil	oil	Residential Soil	Soil	URS
Sample Location	10'	11,	ug/Kg		ug/Kg		ug/Kg
			10/1/98		10/1/98		2/1/98
N-Nitrosodiphenylamine (1)			1,168,000	2	130,352	Э	130,000
4-Bromophenyl-phenyl ether			120,000,000^	Z	4,500,000	z	450,000
Hexachlorobenzene			3,577	Ç	399	C	400
Pentachlorophenol			47,693	C	5,323	ာ	5,000
Phenanthrene		2,600	TN		NL		1,000,000
Anthracene		740	613,200,000	z	23,464,286	z	1,000,000
Carbazole		410	286,160	Э	31,936	၁	32,000
Di-n-butylphthalate			NE		JK.		NL
Fluoranthene		2,800	81,760,000	Z	3,128,571	z	310,000
Pyrene		3,400	61,320,000	z	2,346,429	z	230,000
Butyl benzyl phthalate			408,800,000	z	15,642,857	Z	930,000
3,3'-Dichlorobenzidine			12,718	С	1,419	Э	1,000
Benzo(a)anthracene		2,000	7,840	С	875	ပ	006
Chrysene		2,000	784,000	С	87,497	Ç	88,000
bis(2-Ethylhexyl)phthalate (DEHP)			408,800	o_	45,623	၁	46,000
di-n-Octyl phthalate			40,880,000	N	1,564,286	N	160,000
Benzo(b)fluoranthene		1,800	7,840	C	875	C	006
Benzo(k)fluoranthene		640	78,400	С	8,750	ပ	9,000
Benzo(a)pyrene		1,400	184	С	87	ပ	06
Indeno(1,2,3-cd)Pyrene	U)	1200 J	7,840	С	875	၁	006
Dibenz(a,h)anthracene		450	784	С	87	С	96
Benzo(g,h,i)perylene	UJ	1000 Л	NL		IN.		NL
				ĺ		I	

[^] EPA Region III Rixk-Based Concentration Tables. J. Hubbard, 10:01:99

NL = Not Listed

 ⁼ EPA Region IR Risk-Based Concentration Tables. J. Hubbard, 10/01/98

^{•• =} HSCA Uniform Risk-based Remodiation Standards for noncritical uncestricted land use, 2/1/98

J = Analyte Present. Reported value may not be accurate or precise

C = Carcinogenie N = Non Carcinogenie

TABLE 11. DATA SUMMARY FORM: PESTICIDES AND PCB's SOIL SAMPLES ug/Kg

Sample Number Sample Location	GG TP-2D 10'
alpha-BIIC	
beta-BHC	
delta-BHC	
gamma-BHC (Lindane)	
Heptachlor	
Aldrin	
Heptachlor epoxide	
Endosulfan [
Dieldrin	
4,4-DDE	
Endrin	
Endosulfan li	
4,4-DDD	
Endosulfan sulfate	:
4,4-DDT	
Methoxychlor	
Endrin ketone	:
Endrin aldehyde	i
alpha-Chlordane	
gamma-Chlordane	
Тохарнепе	1
Aroclor-1016	
Aroclor-1221	
Aroclor-1232	
Aruclur-1242	:
Aroclor-1248	
Aroclor-1254	
Aroclor-1260	

@99016.xls

Sampling Date: December 1-2, 1998

DATA SUMMARY FORM: INORGANICS X-RAY FLUORESCENCE (XRF) Shallow Soil Samples

mg/kg

					!			
Sample Number	TP-1s	TP-2s	TP-3s	TP-4s	TP-5s	TP-6s	TP-7s	TP-8s
Sample Location	12"	12"	12-18"	12-18"	12.	12-18"	12-18"	24"
Analyte								
Antimony	1.12	1.72	2.45	4.12	3.66	0.994	4.78	QN:
Arsenic	3,55	GN S	18.6	65.0	24.7	12.4	11.4	8.93
Barium	332.3	310.9	330.2	691.7	388.1	346.5	339.9	371.0
Cadmium	0.598	0.813	2.88	ΩN	0.582	1.37	ON	1.03
Calcium	13127	9361	4576	16627	5173	4165	4409	3455
Chromium	88.2	9.08	9.98	190.3	77.8	106.5	41.2	50.6
Cobalt	23.1	QN	56.4	66.6	106.5	5.52	113.4	65.5
Copper	34.8	31.2	55.9	257.6	92.1	71.3	46.5	20.6
lron	45249	38656	35220	34147	32787	28219	30820	30066
Lead	18.2	52.8	185.1	1744	277.8	74.0	103.4	23.7
Manganese	497.1	829.6	529.9	627.2	687.9	326.9	516.4	426.3
Mercury	QN	2.09	QN	QN	dN	0.966	_ ON	ΩN
Nickel	29.1	41.4	46.5	149.4	2.79	70.1	1.47	36.1
Selenium	4.19	0.604	QN	QN	1.63	QN	ND	ND
Silver	Q.	Q	QN	1.41	0.218	0.034	0.147	0.214
Thallium	QN	ON	QN	ON	QN	7.26	QN	ON
Vanadium	120.0	96.0	131.4	204.9	122.4	113.5	63.1	92.1
Zinc	59.1	74.1	178.5	813.8	229.5	74.7	97.5	43.0

Note: Elevated levels of from in samples may result in increased cobalt readings. Elevated levels of lead in samples may result in increased arsenic readings.

ND = Not Detected

Bold = Sample sent to laboratory for TAL (metals) analysis

∯98116.xls

Sampling Date: December 1-2, 1998

DATA SUMMARY FORM: INORGANICS X-RAY FLUORESCENCE (XRF)

Shallow Soil Samples mg/kg

Sample Number	TP-9s	TP-10s	TP-11s	SS-1	SS-2	SS-3	88-4	88-5
Sample Location	12-18"	12"	12"	0-12"	0-18"	0-5"	. 9-0	0-5"
Analyte								
Antimony	2	2	0.106	9	Q	Q	2.73	QN
Arsenic	17.3	33.2	3.25	10.1	8.31	10.9	12.0	5.47
Barium	305.2	446.3	480.8	325.0	438.8	403.0	375.3	366.2
Cadmlum	0.720	0.203	1.40	9	1.74	S	9	1.65
Calclum	10122	7972	4436	2983	4485	4871	2387	5975
Chromlum	74.7	101.0	110.4	52.2	66.3	47.2	52.9	99.5
Cobalt	59.8	84.5	18.8	S	95.4	32.3	105.0	120.4
Copper	58.0	50.4	31.2	38.6	33.0	34.2	43.9	54.9
lron	35026	58852	39265	23277	39670	26444	30851	29716
Lead	246.9	312.7	52.8	76.2	70.2	117.7	100.7	136.5
Manganese	528.8	1.187	598.9	779.7	517.8	586.5	568.6	525.1
Mercury	6.13	4.70	Q.	6.82	10.0	6.17	2.68	3.39
Nickel	10.0	QN	50,4	18.7	16.3	46.1	23.7	64.9
Selenium	QN	QN	4.05	0.261	4.24	0.603	ND	ND
Silver	QN	QN	0.528	0.754	1.24	1.37	0.130	2.35
Thallium	QN	QN	QN	QN	QN	1.89	1.24	ND
Vanadium	127.6	113.0	9.96	9.78	98.6	52.5	95.8	98.8
Zinc	213.2	155.7	99.8	71.9	107.6	134.8	128.3	142.2

Note: Elevated levels of iron in samples may result in increased cobalt readings.

Elevated levels of lead in samples may result in increased arsenic readings.

ND = Not Detected

Bold = Sample sent to (aboratory for TAL (metals) analysis

198116.xls

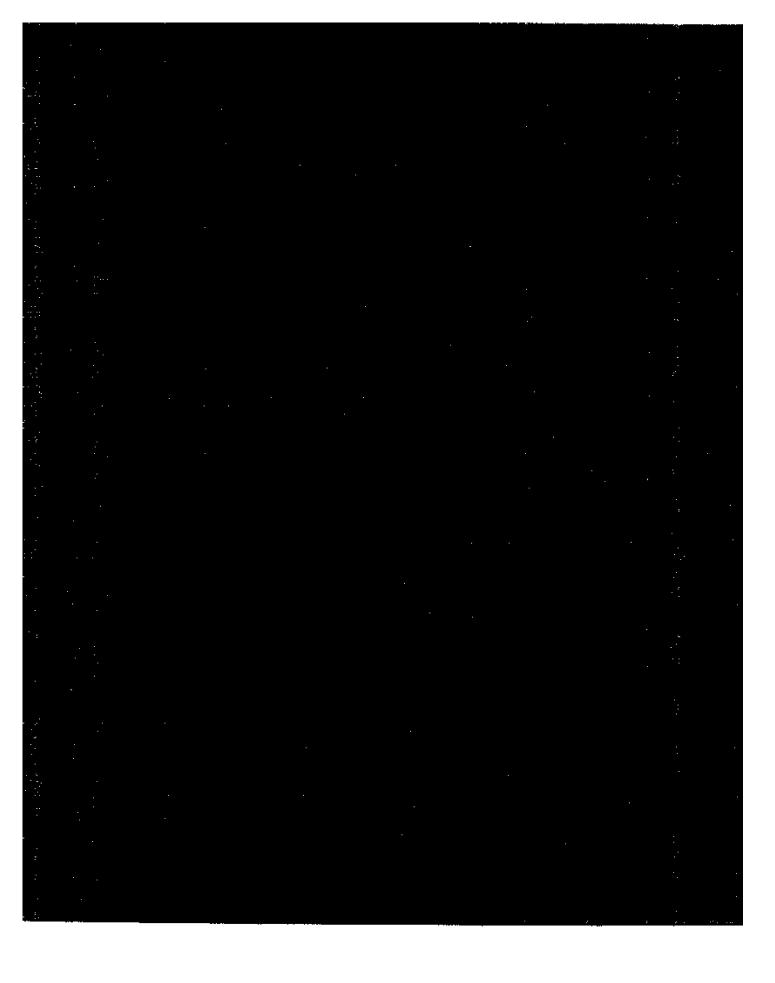
Sampling Date; December 1-2, 1998

DATA SUMMARY FORM: INORGANICS X-RAY FLUORESCENCE (XRF)

Deep Test Pit Soil Samples mg/kg

Sample Number	TP-1d	TP-2d	TP-3d	TP-4d	TP-4c	TP-Sd	TP-6d	TP-7d
Sample Location	12-13'	10'	12'	12-13'	3.	11.	11-12'	10-11'
Analyte								
Antimony	0.592	2.65	3.20	₽	9.22	2	0.508	Q
Arsenic	1.18	1.18	QN	1.90	100.3	1.13	8.99	8.26
Barium	258.0	400.5	91.6	108.4	780.5	188.7	467.2	361.8
Cadmium	QN	QN	QN	0.657	0.552	1.07	문	2
Calcium	9628	5398	5518	8278	8511	2525	7017	3646
Chromium	60.0	87.8	77.1	89.0	192.6	61.8	63.6	83.0
Cobalt	181.2	80.8	75.6	QN	18.2	74.8	683	53.4
Copper	39.7	16.4	QN	107.6	322.9	12.0	45.0	21.8
Iron	105059	75163	79277	119147	34121	29115	32409	41028
Lead	QN	13.5	10.3	20.5	2145	18.0	154.5	27.5
Manganese	2086	1500	719.7	601.6	484.0	726.6	463.9	503.3
Mercury	QN	2.72	QN	ND ND	3.03	5.22	ND	4.12
Nickel	63.8	30.1	20.7	57.1	95.3	30.9	45.8	QN
Selenium	. QN	QN	Q.	QN	2	1.31	0.508	1.12
Silver	1.03	1.45	GN	0.426	0.015	QN	1.83	QN
Thallium	QN	2.11	4.53	6.42	0.324	29.7	ON	2.41
Vanadium	196.5	155.3	139.0	177.5	193.3	136.7	71.2	67.0
Zinc	141.6	0.99	49.5	128.6	1050	52.1	164.4	56.2

Note: Ekevated levels of fron in samples may result in Increased cobalt readings. Elevated levels of lead in samples may result in increased arsenic readings. ND = Not Detected


Bold = Sample sent to laboratory for TAL (metals) analysis

lj98116.xls

Sampling Date: December 1-2, 1998

DATA SUMMARY FORM: INORGANICS X-RAY FLUORESCENCE (XRF) Deep Test Pit Soil Samples mg/kg

Sample Number	TP-8d	P-9T	TP-10d	TP-11d	TP-15	TP-16
Sample Location	11-12	1-1-	į.	10-11	 ლ	=
Analyte			:		Duplicate of TP-4c	Duplicate of TP-9d
Antimony	4.25	5,16	5.08	2	7.78	5.13
Arsenic	7.27	33.1	27.9	8.38	37.0	41.7
Barium	274.7	683.6	242.5	328.1	876.3	717.3
Cadmium	2	0.350	0.949	2	0.455	3.25
Calcium	3105	6442	11307	3658	9640	6179
Chromium	76.6	168.2	83.6	48.7	164.8	181.0
Cobalt	88.9	208.9	19.5	26.3	40.0	17.8
Copper	26.2	226.1	63.6	29.5	321.0	219.7
Iron	38880	64893	33090	21887	32385	63187
Lead	25.2	920.2	262.3	32.9	1121	768.8
Manganese	349.1	821.1	444.1	801.2	544.8	752.3
Mercury	3.60	2	0.420	9	QN	Q
Nickel	9	101.6	38.7	90.9	120.2	73.8
Selenium	ON I	ND	1.10	1.95	3.33	QN
Silver	1.50	1.68	9990	2.35	0.161	QN
Thallium	2.32	QN	4.95	2	QN	QN
Vanadium	183.1	161.3	6.78	55.2	216.5	208.3
Zinc	47.4	1394	197.2	62.8	1148	1315

SCREENING DATA - DATA IS <u>NOT</u> VALIDATED GEORGE GRAY SCHOOL POLYCHLORINATED BIPHENYLS (PCB) IMMUNOASSAY TEST RESULTS COMPARISON WITH LABORATORY DATA

SAMPLE ID	IMMUNOASSAY RESULT mg/Kg	LABORATORY RESULT mg/Kg	CONFIRMATION YES / NO
	SHALLOW	TEST PIT SAMPLES	
TP-1S	ND	N/A	N/A
TP-2S	ND	N/A	N/A
TP-38	ND	N/A	N/A
TP-4S	ND	N/A	N/A
TP-5S	ND	N/A	N/A
TP-6S	ND	N/A	N/A
TP-7S	ND ND	N/A	N/A
TP-8S	ND	N/A	N/A
TP9S	ND	N/A	N/A
TP-10S	ND	<u>N/A</u>	N/A
TP-11S	ND	N/A	N/A
	SHALLOV	V SOIL SAMPLES	
SS-1	ND	N/A	N/A
SS-2	ND	N/A	N/A
SS-3	ND ND	N/A	N/A
SS-4		N/A	N/A
SS-5	ND	N/A	N/A
·	DEEP TE	ST PIT SAMPLES	
TP-1D i	ND	N/A	N/A
TP-2D	ND i	ND	YES
TP-3D	ND		N/A
TP-4D	ND	N/A	N/A
TP-4C	ND	N/A	N/A
TP-5D	ND	N/A	N/A
TP-6D	ND	N/A	N/A
TP-7D	ND	N/A	N/A
TP-8D	ND	N/A	N/A
TP9D	ND	N/A	N/A
TP-10D	ND	N/A	N/A
TP-11D	ND	N/A	N/A

ND - Non-detected

NT - Not tested - No field screening data

N/A - Not applicable - No laboratory data

Bold - Sample submitted for laboratory PCB analysis

SCREENING DATA - DATA IS <u>NOT</u> VALIDATED GEORGE GRAY SCHOOL

POLYAROMATIC HYDROCARBON (PAH) IMMUMOASSAY TEST RESULTS COMPARISON WITH LABORATORY DATA

SAMPLE ID	IMMUNOASSAY RESULT mg/Kg	LABORATORY RESULT mg/Kg*	CONFIRMATION YES / NO
	SHALLOW	TEST PIT SAMPLES	
TP-1S	>1, <50	N/A	N/A
TP-2S	>1, <50	N/A	N/A
TP-3S	>50	>140	YES
TP-4S	>1, <50	N/A	N/A
TP-5S	>50	8.2 + TNR	YEŞ
TP-6S	>50	24.9 + TNR	YES
TP-7S	>1, <50	N/A	N/A
TP-8S	>1, <50	N/A	N/A
TP9S	>50	21,7 + TNR	YES
TP-10S	>1, <50	N/A	N/A
TP-11S	>1, <50	N/A	N/A
	SHALLOV	V SOIL SAMPLES	
SS-1	>1, <50	N/A	N/A
SS-2	>1, <50	N/A	N/A
SS-3	>1, <50	N/A	N/A
SS-4	>50	>75	YES
SS-5	>1, <50	N/A	N/A
- · ·	DEEP TES	ST PIT SAMPLES	
TP-1D	<1	N/A	N/A
TP-2D	<1	0	YES
TP-3D	<1	N/A	N/A
TP-4D	<1	N/A	N/A
TP-4C	>1, <50	N/A	N/A
TP-5D	<1	N/A	N/A
TP-6D	>1, <50	N/A	N/A
TP-7D	>1, <50	N/A	N/A
TP-8D	>1, <50	N/A	N/A
TP9D	>1, <50	N/A	N/A
TP-10D	>50	28.9 + TNR	YES
TP-11D	<1	N/A	N/A

NT - Not tested - No field screening data

N/A - Not Applicable - No Laboratory Data

^{*}TCL Polyaromatic Hydrocarbons + TiCs

TICs - Tentatively Identified Compounds

TNR - TICs not reported

Bold - Samples sent to laboratory for PAH analysis

TOXICOLOGICAL EVALUATION

FOR

THE FORMER GEORGE GRAY ELEMENTARY SCHOOL

WILMINGTON, DELAWARE

June, 1999

(Brownfields Preliminary Assessment II)

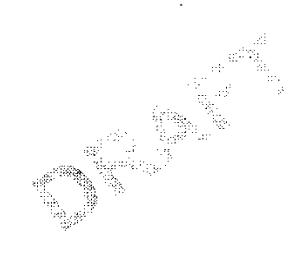
DELAWARE DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL CONTROL

DIVISION OF AIR AND WASTE MANAGEMENT

SITE INVESTIGATION & RESTORATION BRANCH 391 LUKENS DRIVE NEW CASTLE, DELAWARE 19720

Prepared By:

Lawrence J. Jones
Environmental Scientist
Site Investigation and Restoration Branch
Division of Air and Waste Management
Department of Natural Resources and
Environmental Control
391 Lukens Drive
New Castle, Delaware 19720


Reviewed and Approved By:

Karl F. Kalbacher
Environmental Program Manager I
Site Investigation and Restoration Branch
Division of Air and Waste Management
Department of Natural Resources and
Environmental Control
391 Lukens Drive
New Castle, Delaware 19720

TABLE OF CONTENTS

1.0	SUMMARY		1
2.0	SUPPORT DOCUMENTATION FOR	R TOXICOLOGICAL EVALUATION	3
2	1 Exposure Pathways		3
2			
	2.2.1 Present Time Receptors		5
	2.2.2 Future Receptors		б
3.0			
		L	
	3.1.1 Benzo(a)pyrene, Benzo(a)anth	racene, Benzo(b)fluoranthene, Indeno(1,2,3-cd)pyrene.	
	Dibenz(a,h)anthracene, Benzo(k)fluora	nthene	6
3	.2 RISKS FOR PRESENT/FUTURE TIME E.	XPOSURES BASED ON SOIL DATA	7
3	.3 SEDIMENT		7
4.0	INORGANIC CONTAMINATION		7
4	.1 SOIL		7
	.2 RISKS FOR PRESENT/FUTURE TIME E.	XPOSURES BASED ON SOIL DATA	8
4	3 Present/Future Time Potential A	ADVERSE EFFECTS	8
	4.3.1 Arsenic		8
	4 3 2 Iron		Ω
	4.3.3 Lead	100 p. 20.	9
4	.4 Groundwater	100 p. 25 p.	10
4	.5 SURFACE WATER		10
5.0	ACROSS MEDIA SUMMARIES OF	CANCER RISKS AND ADVERSE HEALTH EFFECTS	10
6.0	RECOMMENDATIONS AND SUMM	MARY	10
	#[10]		
7.0		VITH TOXICITY ASSESSMENT	
REF	ERENCES & SOURCES		12
T Fer	r of tari be		
Т	ABLE I. QUALIFIED AND RISK-BAS	ED CONCENTRATION-SCREENING YIELDING ANALYTE	SOF
С	ONCERN EVALUATED TOXICOLOG	ICALLY AS CARCINOGENIC EXPOSURE SCENARIOS FOR	
Ţ	HE GEORGE GRAY SCHOOL SITE,		17
	FUTURE SITE USE SCENARIO -CAR	CINOGENIC RISK - SHALLOW AND DEEP SOIL	17
~-	PRESENT/FUTURE SITE USE SCEN	ARIO - CARCINOGENIC RISK - SHALLOW AND DEEP SOIL	17
1	ABLE 2. QUALIFIED AND RISK-BAS	ED CONCENTRATION-SCREENING YIELDING ANALYTE	S OF
		ICALLY AS NON-CARCINOGENIC EXPOSURE SCENARIO	
r		AND WAZARO ONOTICET BUALLOTA AND DEED COL	
		ARIO - HAZARD QUOTIENT - SHALLOW AND DEEP SOIL	
		ARIO - HAZARD QUOTIENT - SHALLOW AND DEEP SOIL ZARD OUOTIENT - SHALLOW AND DEEP SOIL	
	· · · · · · · · · · · · · · · · · · ·	END VOVIENT - BRALLON AND DEEF MAL	17

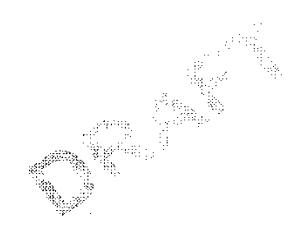
IST OF APPEN	DICES	20
APPENDIX 1.	TOXICOLOGICAL EXPOSURE ASSUMPTION, DEFINITIONS, AND EXPOSURE	
PARAME	TERS APPLIED IN THIS RISK EVALUATION.	21
APPENDIX 2.	GLOSSARY OF DATA QUALIFIERS APPLIED TO RESULTS OF LABORATORY	
ANALYS	ES*	24
	DATA SELECTION PROCEDURES APPLIED FOR DEVELOPMENT OF CHEMICAL O	
CONCER	N	25
APPENDIX 4.	MAXIMUM CONTAMINANT LEVELS, MAXIMUM CONTAMINANT LEVEL GOALS.	
AND SEC	ONDARY MAXIMUM CONTAMINANT LEVELS	26
APPENDIX 5.	EPA WEIGHT-0F-EVIDENCE CLASSIFICATION SYSTEM FOR POTENTIAL	
CARCING	DGENS	27
	DOSE FOLIATIONS USED IN THIS RISK EVALUATION - INCESTION	

1.0 Summary

A Brownfields Preliminary Assessment II was performed at the former George Gray Elementary School site to collect necessary data to evaluate the potential threat to human health and the environment resulting from historical site-related activities. Sampling was undertaken to characterize the on-site soils on the property.

Potential increased cancer risks were found for future on-site workers and for theoretical future adult and child residents via the inadvertent ingestion of contaminated surface or deep soils from the site when modeled under a worst case scenario. Currently there is no potable groundwater usage in the assessment area and due to a lack of groundwater resources this pathway was not evaluated.

For the theoretical future resident child and trespassing child receptors, potential non-cancer effects resulting from inadvertent ingestion of soil could not be ruled out when modeled using the soil exposure scenario for shallow and deep soil. As noted above, no groundwater use scenario was evaluated.


Increased incremental lifetime cancer risk was evaluated for seven compounds in soil; Benzo(a)pyrene (BaP), Arsenic (as a carcinogen), Dibenz(a,h)anthracene (DahA), Benzo(a)anthracene (BaA), Benzo(b)fluoranthene (BbF), Indeno(1,2,3,-cd)pyrene (IP) and Benzo(k)fluoranthene (BkF).

BaP and DahA found in sample TP-3S at 11.0 and 3.4 mg/Kg, respectively, and Arsenic detected at a concentration of 40.8 mg/Kg in sample TP-16D (field duplicate of TP-9D) provided for cancer risks of 1.20E-04, 3.9E-05 and 9.6E-05 respectively, when modeled for a future adult resident of the site. As modeled for the on-site worker the increased cancer risks for BaP, DahA and Arsenic were 2.8E-05, 8.6E-06 and 2.1E-06, respectively. BaA, BbF, and IP all had modeled increased incremental lifetime cancer risks greater than 1.0E-06 when evaluated individually for the future adult resident. Risk for the theoretical future resident when evaluated cumulatively (3.0E-04) exceeded the 1.0E-04 to 1.0E-06 acceptable cancer risk range normal used by U.S. EPA, Region III, while the cumulative modeled risk for the on-site worker (6.7E-05) fell within the target range. It should be noted that the highest concentrations of BaP, DahA and other polycyclic aromatic hydrocarbons (PAHs) were detected in sample TP-3S, collected from beneath the asphalt parking lot, where casual exposure would be minimal.

The potential for future adverse health effects through the inadvertent ingestion of soil for future adult and child residents, workers and trespassing adults and children as modeled indicate that the non-cancer effects of Iron and Arsenic in deep soil sample TP-16D were the primary contributors to the hazard index (HI). Two modeled receptors (future resident child and trespassing child) had an HI in excess of the target of 1.0 (6.16 and 1.37). All other HIs were below the target of 1.0.

Two (2) out of the six (6) shallow and deep soil samples analyzed for Lead during the study contained Lead at levels exceeding the Delaware Uniform Risk-Based Remediation Standard of 1000 mg/Kg for restricted use soils and three (3) others exceeded the unrestricted use level of 400 mg/Kg. No reference dose exists for Lead. The highest concentration of Lead in soil detected during this study was 1510 mg/Kg in shallow test pit soil sample TP-4S.

Due to the lack of a direct surface water pathway, no surface water or sediment exposure scenarios were evaluated.

2.0 Support Documentation for Toxicological Evaluation

Standard and default toxicological values and assumptions were applied herein and most can be found in the Appendices. The corrected (April 12, 1999) Risk-Based Concentration Table from U.S. EPA, Region III, was used as a screening tool to identify chemicals of concern. Modeled parameters and procedures were based on the Risk Assessment Guidance for Superfund (RAGs) and can be found in the References and/or Appendices as noted above. Lifetime cancer risks were developed for adult resident life exposure and are slightly less conservative than a combined child and adult exposure time of 30 years with adjusted body weight. The reported findings result in an insignificant modeled difference yet the recognition of this application to the model should be sufficient to address any concerns.

Reference dose and cancer slope factors were obtained from the Risk-Based Concentration (April 12, 1999) tables from U.S. EPA, Region III. IRIS was used as a source of toxicological information and the U.S. EPA listing of AWQC for chronic exposure to aquatic organisms was surveyed for exceedances.

Sample analysis data used in this evaluation were compiled from the Organic and Inorganic Data Validation Reports as qualified and received from the DNREC-SIRB Analytical Chemist.

2.1 Exposure Pathways

For the purposes of this evaluation the study area was treated as one site for evaluating the soil exposure pathway as a worst-case scenario. In general, the highest concentrations of organic and inorganic contaminants detected during this study were used in the models regardless of the sample location. The evaluation included the evaluation of deep soil samples to account for the potential excavation of soils during construction and renovation.

The George Gray School property consists of a single parcel totaling approximately 4 acres and comprising the majority of a city block. The site is located north and east of the City of Wilmington business district.

The site is bounded by Vandever Avenue, Locust Street, 23rd Street and Thatcher Street. A row of homes is located along the Vandever Avenue side of the property. A large "L"-shaped multistory brick building (a former elementary school) is located near the center of the property. A large asphalt paved parking lot, surrounded by a locked gate and fence, is located on the southwest side of the building. The parking lot is cracked and broken with weeds and grass growing through the cracks. A large grassed field is located on the northeast side of the building property. A small open paved area, the former playground, is at the north end of the building.

The building is currently undergoing asbestos and lead paint abatement on the inside of the structure. An office trailer is located in the south parking lot and a storage trailer is on the northwest side of the building.

Parks and open space are located on adjacent parcels on both the north and south sides of the school property. Private homes and apartments, and a small church border the remainder of the site.

There is no surface water on or directly bordering the site. The Brandywine Creek is located approximately 900 feet west of the subject property. Surface water coming from the site is expected to flow into the Brandywine Creek though overland flow, or into a combined sanitary and storm sewer system operated by the City of Wilmington. During major storm events, excess water may discharge to the river from Combined Sewer Overflows (CSO) located along the Brandywine Creek, just north of Northeast Blvd.

The George Gray School property is located within the Piedmont Physiographic Province lying just north of the Fall Line (or Fall Zone) which runs almost along the course of the Christina River.

The basement rock beneath the site is part of the metamorphic and igneous derived Wilmington Complex. Meta-igneous rocks formed mainly of andesine, hypersthene, clinopyroxene and magnetite with minor amphibole underlie the majority of the site. The southwest corner may be composed mainly of hypersthene-quartz-andesine-gneisswith minor biotite and magnetite. The thickness of the regolith at the site may vary from 0 to 50 feet.

The water table aquifer in the Piedmont generally forms at the base of the regolith, directly above the unweathered bedrock. The depth to groundwater varies depending on the depth of the weathering and may be locally shallow. The Wilmington Complex stores and transmits groundwater almost entirely within fractures and generally in small quantities. Groundwater yields from the hard rock of the Wilmington Complex are generally low, with the yield of the average home well approximately 1 gallon per minute.

From the Fall Line south, the crystalline basement rock is overlain by the Potomac Formation, consisting of variegated clays and silts with some interbedded sands. These sands are generally thin and irregular in the northern part of the Coastal Plain. The Potomac Formation thickens to the southeast but is expected to be generally thin immediately south of the project area. The Potomac Formation is used extensively for water supply to the south of the project area where the sand layers are sufficiently thick.

The study area is expected to have little potential for significant groundwater supply development as a result of low yields due to low transmissivity of the aquifers and little available drawdown.

The George Gray School property is contained entirely within the City of Wilmington's corporate boundaries. The City of Wilmington Water Department provides the potable water supply. The city utilizes surface water from Brandywine Creek for its primary water supply.

The City's closest intake is on the Brandywine Creek at a dam in Brandywine Park, 2.5 miles upstream from the confluence of the Brandywine Creek and Christina River. Water is drawn from the Brandywine Creek via a raceway with headwaters approximately 1.2 miles west-northwest of the school property. The city supplies water to approximately 140,000 individuals in the Wilmington metropolitan area and has water system interconnections with other area suppliers.

There are no known users of groundwater for potable purposes within the study area.

A more detailed description of the George Gray School site is presented in the main Brownfield Environmental Assessment II Report.

The exposure pathway considered in this report is the inadvertent ingestion of soil. The inadvertent ingestion of sediment and the ingestion of local groundwater were not considered due to the lack of current users and limited potential for development of local groundwater resources. No groundwater, surface water or sediment samples were collected during this study.

2.2 Receptors

2.2.1 Present Time Receptors

There are no known on-site residents. Approximately 25,000 people live in the residential areas within one-mile of the site. Present-time exposure scenarios include on-site workers and trespassing children and adults. The building is currently vacant but has been undergoing interior asbestos and lead paint abatement. Details for these exposure estimates and default values can be found in Appendix 1. The pathway and route evaluated consists of inadvertent soil ingestion. There is no known use of local groundwater in the project site as the area is served by a public water supply system.

The maximum values for analytes detected in site samples in the soil pathway were screened based upon Risk-Based Concentration Values (RBC) for residential and industrials soils (U.S. EPA, Region III, April 12, 1999) and were also screened against one-tenth of the RBC to account for additive effects.

For inorganic and organic analytes detected, the highest concentrations of the analytes found in shallow soil samples (0 to 2 feet) and deep samples (greater than 2 feet) were used for the evaluation. Both shallow and deep samples were used to account for future excavation of soil during construction and renovation. Since no one sample contained the highest concentration of all analytes, this will result in a conservative, worst case scenario. It should be noted that the modeled risks and potential adverse health effects may not be characteristic of the entire study area.

2.2.2 Future Receptors

The study area for the George Gray School Brownfields Preliminary Assessment II is proposed to be renovated into a Work Force Development Training and Employment Center. It would include a culinary arts school and catering business, banquet and conference center, automotive training and repair facility, a telemarketing center and a computer center. Border properties are residential and parkland. For this reason, modeling for future land use will include the inadvertent ingestion of soil by residential adults and children, assuming no remediation, in addition to the present worker and trespasser scenarios.

3.0 Organic Contamination

3.1 Soil

Approximately thirty (30) shallow test pit and surface soil samples were collected from the study area during this assessment. The samples were field screened in the DNREC Superfund mobile laboratory for indicator compounds. Following screening, approximately twelve (12) test pit and surface soil samples were selected for all or part of the US EPA Target Analyte List and Target Compound List (TAL/TCL) analysis at an approved laboratory. A complete list of samples, sample locations and analytical results is contained in the main report.

The validated results of the organic analysis of the soil samples were screened via the Risk-Based Concentration (RBC) tables for residential and industrial soils (U.S. EPA, Region III, April 12, 1999).

The highest concentrations of organic and inorganic contaminants detected in soil samples from the George Gray School which exceeded the benchmark Risk-Based Concentration for residential and/or industrial soil are shown in Tables 1 and 2. The complete analytical results are shown in the main report.

3.1.1 Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Indeno(1,2,3-cd)pyrene, Dibenz(a,b)anthracene, Benzo(k)fluoranthene

Benzo (a) pyrene (BaP) and the others are polycyclic aromatic hydrocarbon (PAH) compounds. They are formed during the burning of petroleum products and plant or animal materials. It is also found in coal tar, road and roofing tars and in creosote. Cigarette smoke also contains PAHs. PAHs can enter the body by breathing smoke containing the material or by ingesting it. It is not normally absorbed through the skin, but small amounts may be if the skin has contact with heavy oils containing PAHs.

PAHs have been shown to cause tumors in laboratory animals and are suspected human carcinogens.

3.2 Risks for Present/Future Time Exposures Based on Soil Data

As modeled, BaP in soil sample TP-3S at 11.0 mg/Kg contributed the majority of the increased incremental lifetime cancer risk resulting from organic compounds for the theoretical future adult resident and present on-site worker. The RBC screening value for BaP in soil is 0.088 mg/Kg (residential) and 0.78 mg/Kg (industrial). This sample was collected from beneath the asphalt parking lot.

Table 1 shows an increased incremental lifetime cancer risk to the future adult resident at this site of 1.2E-04 due to BaP. The increased risk for the on-site worker as modeled was 2.8E-05 for BaP. Individually, the risk modeled for BaP exceeds the 1.0E-04 to 1.0E-06 acceptable cancer risk normally applied by U.S. EPA, Region III for the future adult resident scenario.

The additional cancer risks to the present and future resident and workers resulting from the presence of DahA, BaA, BbF, and IP all exceed the 1.0E-06 target risk when modeled individually, as shown in Table 1. BkF adds slightly to the increased incremental cancer risk for modeled receptors (Table 1).

3.3 Sediment

No sediment samples were collected during this investigation. There is no direct surface water or sediment pathway at this site.

4.0 Inorganic Contamination

4.1 Soil

The results of the inorganic analysis of the soil samples were screened via the Risk-Based Concentration for both residential and industrial (U.S. EPA, Region III, April 12, 1999). Only qualified data as per Appendix 2 were utilized.

The inorganic analytes that exceeded the Risk Based Concentration (for residential and/or industrial soil) benchmarks were Iron and Arsenic (as a carcinogen and non-carcinogen).

One (1) shallow sample and five (5) deep soil samples were submitted to the lab for inorganic analysis based on field screening. The sample locations and analytical results are presented in the main report.

Two (2) out of the six (6) samples analyzed for Lead during the study contained Lead at levels exceeding the Delaware Uniform Risk-Based Remediation Standard of 1000 mg/Kg for restricted use soils and three (3) others exceeded the unrestricted use level of 400 mg/Kg. No reference dose exists for Lead and it is discussed below. The highest concentrations of Lead in

soil detected during this study were 1510 mg/Kg in shallow test pit soil sample TP-4S and 1450 mg/Kg in TP-15.

4.2 Risks for Present/Future Time Exposures Based on Soil Data

Increased incremental cancer risk was modeled for Arsenic as a carcinogen for the theoretical future residents and present on-site workers. Utilizing the Arsenic level found in sample TP-16D at a concentration of 40.8 mg/Kg, Table 1 shows an increased cancer risk for the future adult resident of 9.6E-05. For the on-site worker the increased incremental lifetime cancer risk was modeled at 2.1E-05 for Arsenic. Arsenic in both the future resident and on-site worker scenarios falls within the normally accepted risk range of 1.0E-04 to 1.0E-06. The total modeled risk via soil exposure to organic and inorganic compounds combined as modeled for the future residents was 3.0E-04 and for the present on-site worker was 6.7E-05. The modeled residential risk exceeded the 1.0E-04 to 1.0E-06 normally accepted range (Table 1). As previously discussed, the presence of BaP, a PAH, in the surface soils was the primary factor in increased risk at the site.

4.3 Present/Future Time Potential Adverse Effects

The present-time adverse health effects were modeled for inadvertent ingestion of soil and are shown in Table 2. The potential adverse health effects as modeled resulted from the presence of Iron and Arsenic in deep soil at the site. Both Iron and Arsenic had HQs greater than 1.0 in the theoretical future child resident scenario (3.44 and 1.73, respectively).

When additive effects of Manganese, Chromium (as VI), Aluminum and Copper were included, the resulting Hazard Indexes were 0.47 for the on-site worker, 0.14 for the trespassing adult and 1.37 for the trespassing child. (Table 2):

For the theoretical future adult and child residing at the site, the cumulative HIs were 0.66 for the adult and 6.16 for the child, both exceeding the target of 1.0. (Table 2).

Some information on some of the major contributors to the Hazard Index or other potential adverse health effects is included below.

4.3.1 Arsenic

Arsenic is found naturally in the earth's crust. It is also a by-product of smelting of metals and burning of fossil fuels. The primary use of Arsenic is in weed and insect pesticides and as a wood preservative. It is also used in lead-base alloys for hardening lead used in batteries, bearings and cable and as a rust inhibitor in antifreeze.

Systemic effects of Arsenic ingestion include irritation of the digestive tract, decreased production of red and white blood cells, abnormal heart function, blood vessel damage, liver and kidney injury and impaired nerve function.

One of the most common characteristics of ingestion of inorganic Arsenic is the appearance of dark and light spots on the skin, or small corns or warts on the palms, soles and trunk. Arsenic ingestion has also been connected to increased incidence of some forms of cancer. In contrast, there is also some evidence that small amounts (normal dietary intake) of Arsenic may be beneficial to good health.

4.3.2 Iron

Iron is an essential element and therefore, any risk value must protect against deficiency as well as toxicity.

Acute Iron poisoning has been seen in small children who accidentally ingested iron supplements. Acute oral toxicity can affect the stomach and intestines, heart, liver and brain.

Several studies have noted a relationship between very high Iron intake and chronic Iron toxicity, and effects to the liver, heart and pancreas, including cirrhosis, cardiac dysfunction and diabetes.

4.3.3 Lead

Lead has been classified by the EPA as a Group B2 - Probable Human Carcinogen. While there is no reference dose or slope factor value for Lead, it is desirable to minimize Lead exposure to the extent possible, especially for children who preferentially absorb it. Children are also more sensitive to Lead anemia than adults, and young children may experience subtle neurological damage without ever exhibiting classical signs of juvenile lead brain damage, such as loss of motor skills and speech. Learning ability may be impaired due to motor incoordination, lack of sensory perception or inability to concentrate.

Usual Lead cleanup values that are commonly considered are the 400 mg/Kg residential level generally applied by the EPA as a trigger cleanup guideline. Lead in soils in residential neighborhoods above 400 mg/Kg merits further evaluation in future efforts; i.e., evaluation of blood-lead levels. The DNREC Uniform Risk-Based Remediation Standard for Lead is 1000 mg/Kg for restricted use and 400 mg/Kg for unrestricted use.

Using these guidelines, Lead may be considered of analyte of concern for future residents or others that may be exposed to site soils.

4.4 Groundwater

The development of local groundwater for drinking water purposes is highly unlikely due to hydrogeologic conditions and the presence of a public water supply. For this reason, no evaluation of the groundwater pathway was conducted.

4.5 Surface Water

No surface water samples from the Brandywine Creek were analyzed during this assessment.

5.0 Across Media Summaries of Cancer Risks and Adverse Health Effects

An across media summary was not evaluated as part of this Toxicological Evaluation. The soil pathway is the only pathway of concern for present time receptors. The future use of local groundwater in the vicinity of the study area is highly unlikely due to the presence of a public water supply and limited potential for groundwater development due to low yields and little available drawdown.

6.0 Recommendations and Summary

A large L-shaped building, a former elementary school currently occupies the study area. The site is mostly unfenced and trespassers have access to the property, especially the northern portion. The south parking lot contains numerous breaches in the fence.

Based on the modeled scenarios, parts of the study area may pose a present and future time exposure risk and exceedances of the target for increased incremental lifetime cancer risk for workers and future residents from organic and inorganic contaminants. The modeled risk results from inadvertent ingestion of surface soils containing PAHs and Arsenic. Some of the risks evaluated exceed the 1.0E-04 to 1.0E-06 acceptable cancer risk normally used by U.S. EPA, Region III, but most fall within the range on an individual basis.

The potential for adverse health effects for theoretical future resident children, as modeled, indicate that non-cancerous effects from inorganic analytes in the surface soil via inadvertent consumption at the site are a moderate concern based on analytical results.

Lead was present in two (2) out of the six (6) soil samples at levels exceeding the Delaware Uniform Risk-Based Remediation Standard of 1000 mg/Kg for restricted use soils and three (3) others exceeded the unrestricted use level of 400 mg/Kg. No reference dose exists for Lead. The highest concentration of Lead in soil detected during this study was 1510 mg/Kg.

The majority of the samples used in this evaluation were deep soil samples (greater than 2 feet) or collected from beneath an asphalt parking lot and therefore present minimal present time risk. For this reason, soils disturbed during excavation and construction will require proper handling.

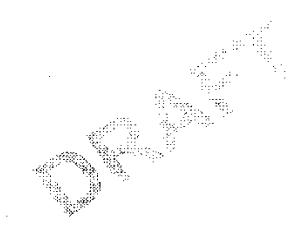
It should be noted that the information contained in this evaluation is based on a limited number of samples collected across a relatively large area. In general, the highest concentration of organic and inorganic contaminants were used in the calculations as a very conservative, worst case scenario. The modeled risks should not be considered to be representative or characteristic of the entire study area or any individual property. Further evaluation, including additional sampling and analysis would be necessary to sufficiently define the potential risks.

7.0 Uncertainties Associated With Toxicity Assessment

In concluding this report, it should be noted that there are many uncertainties associated with the use of toxicological information in health risk assessments which are related to uncertainties intrinsic to toxicology, the models applied, and the interpretations of such derived results. Chief among these uncertainties are the use of dose-response information from high-dose studies to predict adverse health effects at low dose and also the applicability of experimental animal studies to predict effects in humans. However, these and other uncertainties are intrinsic limitations to the risk assessment process which cannot be resolved quantitatively given the current understanding of toxicology and human health. These uncertainties are addressed in part by consistent application of conservative assumptions regarding the toxic effects of chemicals, such as uncertainty factors for reference doses and upper bound estimates for cancer slope factors. Such procedures are intended to protect public health and are expected, in many cases, to overstate potential impacts on human health.

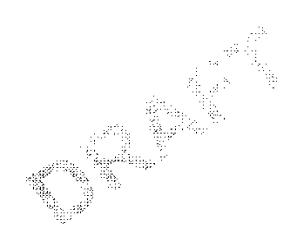
The summation of risks for analytes within and across media may also contribute to such worst case evaluation. Additional uncertainty, also not the case for this site, is usually incorporated by accepting the non-threshold theory for carcinogenicity, wherein any exposure to a carcinogen may result in a theoretical increased lifetime risk of cancer.

LJJ: LJJ99035.DOC DE-1138 II A 3


REFERENCES & SOURCES

- Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation (Part A). U.S. EPA, Office of Emergency and Remedial Response, Washington, DC 20460, EPA/540/1-89/002, December, 1989.
- 2. United States Environmental Protection Agency, 1992. Integrated Risk Information System (IRIS-2 Database). Office of Research and Development.
- 3. United States Environmental Protection Agency. Risk-Based Concentration Table, Region III, Philadelphia, PA. October 22, 1997.
- Health Effects Assessment Summary Tables. United States Environmental Protection Agency, Office of Solid Waste and Emergency and Remedial Response, December, 1989, Updated Quarterly, 1991 last quarter update.
- 5. United States Environmental Protection Agency, December 1992. Drinking Water Regulations and Health Advisories. Office of Water, Washington, DC
- United States Environmental Protection Agency, May 1986. Quality Criteria for Water, 1986. Office of Water Regulations and Standards, Washing, DC
- 7. United States Environmental Protection Agency, 1988. Drinking Water and Health, Vol. 5. Safe Drinking Water Committee, Washington, DC
- 8. Sax, N.I. and Lewis, R.J., Sr., 1987. Hawley's Condensed Chemical Dictionary. Van Nostrand Reinhold Company, NY
- Griffith, H.W., A Complete Guide to Vitamins, Minerals, and Supplements. (U.S. Food and Drug Administration Recommended Dietary Allowances for Specific Age Groups), Fisher Books, Tucson, AZ, 1988.
- Sax, N.I., Dangerous Properties of Industrial Materials. 6th Ed., Van Nostrand Reinhold Co., NY, 1984.
- Clement Associates, Inc. for the United States Environmental Protection Agency, 1985.
 Chemical, Physical, and Biological Properties of Compounds at Hazardous Waste Sites.
 Final Report.
- 12. Lenga, R.E., (editor), The Sigma-Aldrich Library of Chemical Safety Data. Edition Π, Sigma-Aldrich Corp., Milwaukee, WI, 1988.

- Shacklette, H.T., and Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. United States Geological Survey Professional Paper 1270.
- Montgomery, J.H., (1991), Groundwater Chemicals Field Guide, Lewis Publishers, Chelsea, MI.
- 15. Sittig, M., Handbook of Toxic and Hazardous Chemicals and Carcinogens, (1985), Second Editions, Noyes Publications, Park Ridge, NJ. Site.
- State of Delaware Surface Water Quality Standards As Amended, February 26, 1993,
 Delaware Department of Natural Resources and Environmental Control, Division of Water Resources, Dover, DE.
- 17. ARARs Q's & A's: Compliance With Federal Water Quality Criteria, Office of Solid Waste and Emergency Response, United States Environmental Protection Agency, Publication 92;34-09/FS, June, 1990.
- Water Quality Criteria Summary: Concentrations in mg/L. U.S. EPA, Office of Science and Technology, Health and Ecological Criteria Division, Human Risk Assessment Branch, 401 M St., SW, Washington, DC, May 1, 1991.
- 19. Budavari, S. (editor), (1989), The Merck Index, 11th ed., Merck & Co., Inc., Rahway, NJ.
- 20. Farm Chemicals Handbook, (1992), Meister Publishing Co., Willoughby, OH.
- 21. Seminar on Characterizing and Remediating Dense Non-Aqueous Phase Liquids at Hazardous Sites, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45682, EPA/600/K-93/003, May, 1993.
- 22. George Gray School Brownfields Preliminary Assessment Field Notebooks, DE DNREC, December 1998.
- Toxicological Profile for Selected PCBs (Arocior-1260, 1254, 1248, 1242, 1232, 1221, and 1016), Update, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, TP-92/16, Atlanta, GA 1993.
- Toxicology Profile for Arsenic. Agency For Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, TP-88/02, Atlanta, GA 1993.
- Lead in Soil Interim Soil Cleanup Level for Total Lead. OSWER Directive #9355.4-02,
 U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response,
 Washington, DC, September 7, 1989.


- Toxicology Profile for Lead. Agency For Toxic Substance and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1990.
- Toxicology Profile for Manganese. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, TP-91-19, Atlanta, GA 1993.
- Toxicology Profile for Benzo(a)pyrene. Agency for Toxic Substances and Disease Registry,
 U.S. Department of Health and Human Services, Public Health Service, TP-88/05, Atlanta,
 GA 1993.
- 29. Toxicology Profile for Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA 1993.
- Clement Associates, Inc. for the United States Environmental Protection Agency. 1985.
 Chemical Physical, and Biological Properties of Compounds at Hazardous Waste Sites.
 Final Report.
- 31. United States Environmental Protection Agency. 1989. Drinking Water Standards and Health Advisories; Quick Look List. Office of Drinking Water, Ground Water Protection Branch, Washington, DC, April 5, 1989.
- 32. United States Environmental Protection Agency. Air Quality Criteria for Lead. Research Triangle Park (NC), Office of Health and Environmental Assessment, 1986, EPA/600/8-83/028aF.
- 33. United States Department of Health and Human Services, Public Health Service, Centers For Disease Control. Preventing Lead Poisoning in Young Children, October, 1991.
- 34. Proposed Sediment Quality Criteria for the Protection of Benthic Organisms: Dieldrin, U.S. EPA, Office of Water & Office of Research Development, Office of Science and Technology, Health and Ecological Criteria Division, November, 1991, Washington, DC 20460.
- Toxicology Profile for Chromium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service, TP-88/10, Atlanta, GA 1989.
- 36. Proposed Sediment Quality Criteria for the Protection of Benthic Organisms: Endrin, U.S. EPA, Office of Water & Office of Research Development, Office of Science and Technology, Health and Ecological Criteria Division, November, 1991, Washington, DC, 20460.

- 37. Proposed Sediment Quality Criteria for the Protection of Benthic Organisms: Phenanthrene, , U.S. EPA, Office of Water & Office of Research Development, Office of Science and Technology, Health and Ecological Criteria Division, November, 1991, Washington, DC, 20460.
- 38. Hazard Evaluation Handbook, A Guide to Removal Actions, Prepared by the Roy F. Weston Technical Assistance Team for the U.S. Environmental Protection Agency, Region III, Phila., PA. Superfund Removal Branch under Contract #68-WO-0036, October 1991.
- 39. George Gray School Property Brownfields Preliminary Assessment II, Delaware Department of Natural Resources and Environmental Control, June 1998 (DRAFT).
- Greene, R.W., Bioaccumulation-Based Sediment Quality Criteria for the Protection of Human Health, Delaware Department of Natural Resources and Environmental Control, November 1997

LIST OF TABLES

TABLE 1. QUALIFIED AND RISK-BASED CONCENTRATION-SCREENING YIELDING ANALYTES	S
OF CONCERN EVALUATED TOXICOLOGICALLY AS CARCINOGENIC EXPOSURE SCENARIOS	
FOR THE GEORGE GRAY SCHOOL SITE.	. 17
TABLE 2. QUALIFIED AND RISK-BASED CONCENTRATION-SCREENING YIELDING ANALYTES	S
OF CONCERN EVALUATED TOXICOLOGICALLY AS NON-CARCINOGENIC EXPOSURE	
SCENARIOS FOR THE GEORGE GRAY SCHOOL SITE	10

George Gray School BPA II
TABLE 1. QUALIFIED AND RISK-BASED CONCENTRATION-SCREENING YIELDING ANALYTES OF CONCERN EVALUATED
TOXICOLOGICALLY AS CARCINOGENIC EXPOSURE SCENARIOS FOR THE GEORGE GRAY SCHOOL SITE.

FUTURE SI'		SCENARIO	CARCINO	GENIC RIS	K - SHAL	E USE SCENARIO -CARCINCGENIC RISK • SHALLOW AND DEEP SOIL	EP SOIL	
September 2000 Control of the Contro			11.10		ellisotte			
3000 N		(0)	ATTITUTE OF	ii)		8) { [8] 27(1) (2)		
BENZO(a)PYRENE	TP-3s	11.0	NQ	1.2E-04	+	I	7.3E+00 (i)	82
ARSENIC (as carc.)	TP-16d	40.8	NO	9.6E-05	1	3.0 E-04 (i)	1.5 E+00 (I)	4
DIBENZ(a,h)ANTHRACENE	TP-3s	3.4	ğ	3.9E-05	;	;	7.3E+00 (e)	B2
BENZO(a)ANTHRACENE	TP-3s	14.0	ğ	1.6E-05		i	7.3E-01 (e)	82
BENZO(b)FLUORANTHENE	TP-3s	14.0	S.	1.6E-05	·	i	7.3E-01 (e)	B2
INDENO(1,2,3-cd)PYRENE		8.9	Ø.	1.0E-05		i	7.3E-01 (e)	B2
BENZO(k)FLUORANTHENE	se-41	8.0	יי	9.1E-07			7.3E-02(e)	B2
Total Increased Incremental Lifetime Cancer Risk	me Cancer Ri	sk		3.0E-04				

PRESENT/FUTI		EUSE SCENA	RIO - CAR	JRE SITE USE SCENARIO - CARCINOGEWIC RISK - SHALLOW AND DEEP SOIL	HALLOW AN	ID DEEP SOIL	
ded Redection to the contract of the contract of	Most substantial					William Steinberg	法第2条公司
	ार्ग्य होता	(Dist)		~3/5/jio/f_c/5(521)g	(1) (1) (1) (1) (1) (1) (1) (1)		300 May 20
BENZO(a)PYRENE		11.0	ÖN	2.8E-05	-	7.3E+00 (i)	82
ARSENIC (as carc.)	TP-16d	40.8	ğ	2.1E-05	3.0 E-04 (i)	1.5 E+00 (i)	¥
DIBENZ(a,h)ANTHRACENE	TP-3s	3.4	Ø	8.6E-06	i	7.3E+00 (e)	B2
BENZO(a)ANTHRACENE	TP-3s	14.0	Ø	3.5E-06	i	7.3E-01 (e)	B2
(BENZO(b)FLUORANTHENE	TP-3s	14.0	NQ	3.5E-06	ļ	7.3E-01 (e)	B2
INDENO(1,2,3-cd)PYRENE	TP-3s	8.9	õ	2.2E-06		7.3E-01 (e)	B2
BENZO(k)FLUORANTHENE	TP-3s	8.0	ſ	2.0E-07	1	7.3E-02(e)	B2
Total Increased Incremental Lifetime Cancer Risk	ime Cancer R	sk		6.75-05			

IRIS-2 (I), withdrawn from IRIS-2 (x), HEAST (h), HEAST afternative method (a), withdrawn from HEAST (y), EPA-ECAO (e), other EPA documents (o) NQ, J, K, L, [] = Data qualifiers applied – see Appendix 2.

D ≖ Dituled sample

Rounded total from additional decimal places

** = By Inhelation only Shaded areas = Exceedances of 1.0 x 10E-16 for Cancer Risk or 1 for Hazard Quotient. NOTE: Dose-Response Modeling Paradigm – see Appendix 6.

George Gray School BPA II
TABLE 2. QUALIFIED AND RISK-BASED CONCENTRATION-SCREENING YIELDING ANALYTES OF CONCERN EVALUATED
TOXICOLOGICALLY AS ADMINISTRATION EVALUATED TOXICOLOGICALLY AS NON-CARCINOGENIC EXPOSURE SCENARIOS FOR THE GEORGE GRAY SCHOOL SITE.

PRESENT/FL	JT.	RE SITE USE SCENARIO - HAZARD QUOTIENT - SHALLOW AND DEEP SOIL	VARIO - H	4ZARD QUC	TIENT - SE	ALLOW AND	DEEP SOIL	
Control of the contro	and the second s				onited):	Tellicated at		
				ome:	(MIII)			
IRON	TP-16d	80,800	NQ	0.7674	0.0822	3.0 E-01 (e)	-	ļ
ARSENIC	TP-16d	40.8	ÖN	0.3875	0.0415	3.0 E-04 (i)	1.5 E+00 (i)	⋖
MANGANESE	TP-16d	735	NO	0.1047	0.0112	2.0 E-02 (i)	-	۵
CHROMIUM (as VI)	TP-16d	56.1	ş	0.0532	0.0057	3.0 E-03 (i)	i	A**
ALUMINUM	TP-9d	12,700	ÖN	0.0361	0.0038	1.0 E+00 (e)	i	i
COPPER	TP-16d	343	NO	0.0244	0.0026	4.0 E-02 (h)	į	
Total Non-Cancer/Systemic Hazard In-	azard Index f	dex for Shallow/Deep Soil	oil	1.3735* _{8.0}	0.1471*			

PRESENTAGI		ITE USE SCE	NARIO - HA	URE SITE USE SCENARIO - HAZARD QUOTIENT - SHALLOW AND DEEP SOIL	ALLOW AND	DEEP SOIL	
9 34 (0.304-2494	MOID.	(ຄຸກ)ເປັນ ເປັນສູ້ລາກາ ອິດປະ		(Promotion	9)((0) (1)(((())(0) ((())((())((())((())(
	TP-16d	80,800	ON.	0.2635	3.0 E-01 (e)	-	1
ARSENIC	TP-16d	40.8	NO	0.1330	3.0 E-04 (i)	1.5 E+00 (I)	₹
MANGANESE	TP-16d	735	ğ	0.0359	2.0 E-02 (I)	ì	۵
CHROMIUM (as VI)	TP-16d	56.1	Ñ	0.0182	3.0 E-03 (i)	j	A**
ALUMINUM	P6-d1	12,700	2	0.0124	1.0 E+00 (e)	i	
COPPER	_TP-16d	343	NQ	0.0083	4.0 E-02 (h)	i	
Total Non-Cancer/Systemic Hazard	azard Index fo	Index for Shallow/Deep Soil	lios	0.4716*			

IRIS-2 (I), withdrawn from IRIS-2 (X), HEAST (II), HEAST alternative method (a), withdrawn from HEAST (y), EPA-ECAO (e), other EPA documents (o). Dis Divided Sample

Rounded total from additional decimal places

** By inhalation only Shaded areas = Exceedances of 1.0 x 10E-06 for Cancer Risk or 1 for Hazard Quotient. NOTE: Dose-Response Modeling Paradign = See Appendix 6.

TABLE 2. QUALIFIED AND RISK-BASED CONCENTRATION-SCREENING YIELDING ANALYTES OF CONCERN EVALUATED TOXICOLOGICALLY AS NON-CARCINOGENIC EXPOSURE SCENARIOS FOR THE GEORGE GRAY SCHOOL SITE.

FUTO	FUTURE SITE U	E USE SCENARIO • HAZARD QUOTIENT • SHALLOW AND DEEP SOIL) · HAZAF	<i>D QUOTIEN</i>	IT - SHALL(JW AND DEEF	NOS.	
ment of the state		replication (replication)	e officer	Telum.	300 1361-	(19) (10) (19) (10)	Veloci Amilian	
RON	TP-16d	90,800	ON	0.3689	3,4435	3.0 E-01 (e)	30% (31%) S	
RSENIC	TP-16d	40.8	Ø	0.1863	1.7388	3.0 E-04 (i)	1.5 E+00 (i)	V
ANGANESE	TP-16d	735	ğ	0.0503	0.4698	2.0 E-02 (i)	:	۵
HROMIUM (as VI)	TP-16d	56.1	ğ	0.0256	0.2390	3.0 E-03 (i)	1	¥
LUMINUM	P-94	12,700	ğ	0.0173	0.1623	1.0 E+00 (a)		!
OPPER	TP-16d	343	ğ	0.0117	0.1096	4.0 E-02 (h)	1	٥
ota! Non-Cancer/Systemic Hazard Index for Shallow/Desn Soil	szard Index fo	r ShallowiDeen S	lic	0.6603*	6 16330			

| Odal Nott-Caricer/Systemic riazard index for Shallow/Deep Soli | 0.5503 | 6.1633;; | 6.1633; | 1.1633 | 1.163

NQ. J. K, L, [] = Data qualifiers applied – see Appendix 2. = Rounded total from additional decimal places

" = By inhalation only

Shaded areas = Exceedances of 1.0 x 10E-06 for Cancer Risk or 1 for Hazard Quotlent NOTE: Dose-Response Modeling Paradigm – see Appendix 6.

LIST OF APPENDICES

APPENDIX 1. PARAMETERS	TOXICOLOGICAL EXPOSURE ASSUMPTION, DEFINITIONS, AND EXPOSURE APPLIED IN THIS RISK EVALUATION	.1
	GLOSSARY OF DATA QUALIFIERS APPLIED TO RESULTS OF LABORATORY	4
APPENDIX 3. OF CONCERN	DATA SELECTION PROCEDURES APPLIED FOR DEVELOPMENT OF CHEMICAL	5
APPENDIX 4. AND SECONDA	MAXIMUM CONTAMINANT LEVELS, MAXIMUM CONTAMINANT LEVEL GOALS, RY MAXIMUM CONTAMINANT LEVELS2	6
	EPA WEIGHT-0F-EVIDENCE CLASSIFICATION SYSTEM FOR POTENTIAL S2	7
APPENDIX 6.	DOSE EQUATIONS USED IN THIS RISK EVALUATION - INGESTION	8

APPENDIX 1. TOXICOLOGICAL EXPOSURE ASSUMPTION, DEFINITIONS, AND EXPOSURE PARAMETERS APPLIED IN THIS RISK EVALUATION

Target Cancer Risk	press in Co. and materials are concerned as 1.00×10^{-6} (specific contaminant) (Sparse specific contaminant) 1.00×10^{-4} to 1.00×10^{-6}
Body Weight	Adult: 70 Kg Child: 15 Kg
Averaging lame opears of Life Drinking Water Ingestion Rate	70 Years Adult: 2 L/day
Officing which theconor trace	Child: 1 L/day
s oil ingestion	Age Adjusted: 1.09 (L-y/Kg-d) Adult: 100 mg/day (conservative)
	7 Child 200 ng day are
	Worker IOU mg/q8V (very consequence) Age Adjusted: D14/29 (mg/sV kg/q8)
Exposure Frequency	Residential: 350 days/year
Exposure Duration	Occupational 250 days/year Lesidential Sulvears
Chart	Ecopan mai 25 years
Child Trespasser	Two episodes per week for 39 weeks over six years On car burs generally receptions per week for 30
	vestseverzewere

RELEVANT COMMENTS/NOTES/BENCHMARKS & SCREENING

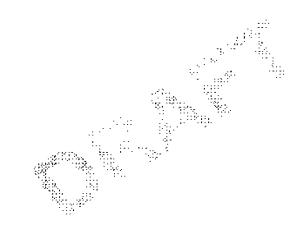
The upper-bound estimate of carcinogenic risk is expressed in terms of the number of excess cancers over a lifetime in an exposed population under a specific exposure scenario. For instance, a carcinogenic risk of 1.0×10^6 ($1.0 \times 10E-06$ or 1.0E-06) is defined as 1 additional cancer per 1 million exposed individuals. In general, the U.S. EPA (Region III, Technical Section and others) defines incremental carcinogenic risk within the 1.0E-06 to 1.0E-04 range being acceptable, with 1.0E-06 being the point-of-departure. This supports a cleanup initiation point of 1.0E-04. The target risk of *de minimis* risk level is considered also to be 1.0E-06.

A non-carcinogenic threat is expressed in terms of a Hazard Quotient (HQ). An HQ is the ratio between the dose of a single substance over a specified period of time compared to the RfD for that substance. The Hazard Index (HI) is the sum of more than one HQ for multiple substances

or multiple exposure routes and pathways. When the HQ or the HI exceeds unity, there may be concern for potential non-cancer health effects. The target non-cancer risk here is unity.

Systemic effects, usually non-carcinogenic, requires absorption and distribution of the toxicant to a site distant from the point of entry, and at which point effects are produced. Most chemicals that produce systemic toxicity usually do not cause a similar degree of toxicity in all organs. Normally the major toxicity is demonstrated in one or more organs. These are referred to as the target organs for that chemical.

The combined carcinogenic risks and non-carcinogenic threats over a 30 year residential exposure duration (6 years as a child resident plus 24 years as an adult resident) are presented. It is recognized that a recently applied philosophical change is now being applied by Region III to estimate exposures to carcinogens and is used to derive the benchmark values. Previous versions of the benchmark table noted estimated exposures to carcinogens on the basis of 30 years of adult exposure. Now the calculations for three media have been changed to reflect 30 years of combined childhood and adult exposure, using **age adjusted factors** via integrated weight and ingestion/inhalation estimates for combined child/adult exposures. This has lowered the appropriate risk based concentrations for carcinogens in tap water, in ambient air, and in occupational and residential soil slightly. Other exposure rates such as for fish consumption remained the same.


The study herein does not apply the ingestion adjusted estimated exposure for carcinogens, and thus the modeled values for adults exposed to carcinogens in drinking water and soil ingestion or air will show slightly less risk. In time, as it is evident that the use of this age-adjustment factor has been followed without revision/change for a reasonable period of time, then our models will begin applying it routinely, but until a consistent pattern emerges, the past model parameters will continue to be used. The previous revision based upon body weight changes lasted for three months and wasted considerable time and effort related to revising the models. The most recently released and "corrected" benchmark values are used for screen purposes, thus analytes of concern are included based on the new philosophy and corrected tables.

Benchmark values are concentrations in various media providing cancer risks reported at 1.0E-06 or a HQ, non-cancer risk reported at unity or 1. These values have been generally applied as a screening level to identify analyte exceedances in this report so that such compounds may be considered for inclusion in risk assessment models. Risk-Based concentration Tables are provided via U.S. EPA Region III by Senior Toxicologist, Roy L. Smith, Ph.D., in the Technical Support Section (3HW13) on a quarterly basis and as noted in the references in this document. It is important to note that the accompanying comments relevant to the table provides the following information, comments and disclaimers.

"The table contains reference does and carcinogenic potency slopes (obtained from IRIS through...., HEAST through...., OHEA-Cincinnati, and other EPA sources) for nearly 600 chemicals. These toxicity constants have been combined with 'standard' exposure scenarios to calculate chemical concentrations corresponding to a fixed level of risk (i.e., a hazard quotient of 1, or lifetime

cancer risk of 10E-06, whichever occurs at a lower concentration) in water, air, fish tissue, and soil.

The Region III toxicologists use this table as a risk-based screen for Superfund sites, and as a desk reference for emergencies and other requests for immediate information. The table also provides a useful benchmark for evaluating preliminary site investigation data and contractor-prepared preliminary remediation goals. The table has no official status as either regulation or guidance, and should be used only as a predictor of generic single-contaminant health risk estimates. The table is specifically not intended as (1) a stand-alone decision-making tool, (2) a substitute for EPA guidance for preparing baseline risk assessments, (3) a source of site-specific cleanup levels, or (4) a rule to determine if a waste is hazardous under RCRA. In general, chemical concentration above the levels in the table suggest a need for a closer look by a toxicologist, but should not be used a the sole basis for taking any action.

APPENDIX 2. GLOSSARY OF DATA QUALIFIERS APPLIED TO RESULTS OF LABORATORY ANALYSES*

<u>Identification Codes</u> (Confidence concerning presence or absence of analytes.)

	Section (Control of the Control of t
NQ	No Qualifier - Identification confirmed
	No detected substantially above the level reporter and aboratory on detection (sq.
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data
	necessary to confirm result.
	dentative deutine autores consider present. Specialometrous argy bemeeder to occur
	confirm its presence or absence in future sampling efforts.

Quantitation Codes (Can be used for both positive results and sample quantitation limits.)

263	Analyte present. Reported value may not be accurate or precise.
K	Analyte present. Reported value may be biased high. Actual value is expected to be
	lower
	Analyte present. Reported value may be biased low. Actual and us is expected to be see
	fugher 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[]	Analyte present. As values approach the Instrument Detection Limit (IDL) the
	quantitation may not be accurate. (Above R but lower than J.)
	Voludetected: quantitation may be maccurate on impresise
UL	Not detected., quantitation limit is probably higher.

Other Codes

(No analytical result

^{*} Codes normally utilized in risk assessment include: NQ, J, K, and L. Values in brackets are normally not used, but could be applied if judged appropriate. Brackets are considered higher in confidence than R but lower than J.

APPENDIX 3. DATA SELECTION PROCEDURES APPLIED FOR DEVELOPMENT OF CHEMICAL OF CONCERN

For inclusion, data:

- A. Had no delimiting qualifiers, or were J, K, L or [] qualified.
- B. Was the highest concentration encountered for specific medium.
- C. Were analytes of concern with completed exposure pathways and exceedances of toxicological benchmarks, but not generally within an order of magnitude of such benchmarks unless specified. The latter is often discussed but not included in the calculations.
- D. Had surface soil exposures for present and future risks which were given preference over subsurface sample data. Deep soil exposures discussed but not developed into scenarios.
- E. Had filtered groundwater samples that were applied over non-filtered but unfiltered data usually is discussed.
- F. Had results showing inconsistencies, differences between duplicates, high or low background levels, et cetera. Such results were noted and discussed but normally excluded from consideration in the exposure scenarios.

APPENDIX 4. MAXIMUM CONTAMINANT LEVELS, MAXIMUM CONTAMINANT LEVEL GOALS, AND SECONDARY MAXIMUM CONTAMINANT LEVELS

Maximum Contaminant Level Goal (MCLG)

An MCLG is a non-enforceable analyte concentration of a drinking water contaminant set at a level that will result in no known or anticipated adverse health effects and allows an adequate margin of safety.

Maximum Contaminant Level (MCL)

An MCL is an enforceable standard as a drinking water regulation set by the U.S. EPA under the Safe Drinking Water Act and adopted by the State. The standard relates to drinking water delivered to any user of a public system. It is a value as close to the MCLG as feasible with treatment technologies and costs considered. The MCL is protective of adverse human health effects. It may or may not pose a risk greater than 1.0E-06. For certain analytes, especially those having long-time-established MCLs, it has been found at times to be the case whereby, for a specific chemical, the MCL may show an increased incremental lifetime cancer risk greater than the target value.

Secondary Maximum Contaminant Level (SMCL)

An SMCL is non-regulatory health guidance value which relates to the aesthetic quality of drinking water. Contributing factors include taste, odor, color, hardness.....

Reference Dose (RfD)

An estimate of a daily exposure to the human population that is likely to be without appreciable risk of deleterious effects over a lifetime.

Drinking Water Equivalent Level (DWEL)

A lifetime exposure concentration of adverse, non-cancer health effects, that assumes all of the exposure to a contaminant is from a drinking water source.

EPA WEIGHT-0F-EVIDENCE CLASSIFICATION SYSTEM FOR APPENDIX 5. POTENTIAL CARCINOGENS

Human Carcinogen	Sufficient evidence from epidemiological studies to support a casual association between exposure and cancer in humans.
Probable Human Carcinogen	Limited evidence in humans from epidemiological studies
Possible Human Carcinogen	Sufficient evidence in animals, inadequate evidence in humans.
Possible Human Carcinogen	Limited evidence in animals and/or carcinogenic properties in short-term studies.
Not Classified	Inadequate evidence in animals.
Not Classified	No evidence in at least two adequate animal tests or in both epidemiological and animal studies
	Probable Human Carcinogen Possible Human Carcinogen Possible Human Carcinogen Not Classified

^{*} Cancer Slope Values usually available via EPA, Integrated Risk Information System.

Source: U.S. EPA, 1986.

APPENDIX 6. DOSE EQUATIONS USED IN THIS RISK EVALUATION – INGESTION

Hazard Quotient (HQ)

 $CDI = (\underline{CW}) (\underline{IR}) (\underline{EF}) (\underline{ED})$ $(\underline{BW}) (AT)$

<u>CDI</u>=HQ RfD

Cancer Risk (CR)

 $CDI = \underline{(CW) (IR) (EF) (ED)}$ (BW) (AT)

 $CDI \times SF = CR$

 $\mathbf{CR} = 1 \cdot \mathbf{e}(-\mathbf{Dose} \times \mathbf{SF})$

CW= Concentration, mg/L or mg/Kg

IR = Ingestion Rate, L/day or mg/day

EF = Exposure Frequency, days/year

ED = Exposure Duration, year

BW = Body Weight, Kg

AT = Averaging Time, 25,500 days, carcinogen, adult; 9,125 days, non-carcinogen, worker;

2,190 days, non-carcinogen, child (period over which exposure is averaged, days)

CDI = Chronic Daily Intake

RfD = Reference Dose (NOAEL/Safety Factor)

NOAEL = No Observed Adverse Effect Level

RfD to Water = DWEL,

 $\frac{\mathbf{RfD} \times 70\mathbf{Kg} = \mathbf{DWEL}}{\mathbf{2} \, \mathbf{L/day}}$

95% Confidence Level = The mean +/- 2 standard deviations

Lifetime Durations = 70 years

CF = Conversions Factor, for soil ingestion, 1 x 10° Kg/mg

FI = Fraction Ingested, from contaminated source, usually 100% = 1

·	 	

_